화학공학소재연구정보센터
Journal of Materials Science, Vol.54, No.2, 1434-1442, 2019
Synthesis and characterization of single-phase epitaxial Cr2N thin films by reactive magnetron sputtering
Cr2N is commonly found as a minority phase or inclusion in stainless steel, CrN-based hard coatings, etc. However, studies on phase-pure material for characterization of fundamental properties are limited. Here, Cr2N thin films were deposited by reactive magnetron sputtering onto (0001) sapphire substrates. X-ray diffraction and pole figure texture analysis show Cr2N (0001) epitaxial growth. Scanning electron microscopy imaging shows a smooth surface, while transmission electron microscopy and X-ray reflectivity show a uniform and dense film with a density of 6.6gcm(-3), which is comparable to theoretical bulk values. Annealing the films in air at 400 degrees C for 96h shows little signs of oxidation. Nano-indentation shows an elastic-plastic behavior with H=18.9GPa and E-r=265GPa. The moderate thermal conductivity is 12Wm(-1)K(-1), and the electrical resistivity is 70cm. This combination of properties means that Cr2N may be of interest in applications such as protective coatings, diffusion barriers, capping layers and contact materials.