Journal of the American Chemical Society, Vol.141, No.2, 990-997, 2019
Radical Approach to Enzymatic beta-Thioether Bond Formation
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging class of natural products that harbor diverse chemical functionalities, usually introduced via the action of a small number of tailoring enzymes. We have been interested in RiPP biosynthetic gene clusters that encode unusual metalloenzymes, as these may install as yet unknown alterations. Using a new bioinformatic search strategy, we recently identified an array of unexplored RiPP gene clusters that are quorum sensing regulated and contain one or more uncharacterized radical S-adenosylmethionine (RaS) metalloenzymes. Herein, we investigate the reaction of one of these RaS enzymes and find that it installs an intramolecular beta-thioether bond onto its substrate peptide by connecting a Cys-thiol group to the beta-carbon of an upstream Asn residue. The enzyme responsible, NxxcB, accepts several amino acids in place of Asn and introduces unnatural beta-thioether linkages at unactivated positions. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the already impressive catalytic repertoire of the RaS enzyme superfamily.