Langmuir, Vol.35, No.7, 2490-2497, 2019
Investigation of the Assembly Behavior of an Amphiphilic Lipopeptide at the Liquid Crystal-Aqueous Interface
In this article, we designed an amphiphilic lipopeptide molecule, 5(6)-carboxyfluorescein-KKKKKKSKTK-Cys(C12H25)-OMe (FAM-lipopeptide-C12), and studied its assembly behavior at the 4-cyano-4'-pentylbiphenyl (5CB)-aqueous interface. The ordering transitions of liquid crystals (LCs) revealed that FAM-lipopeptide-C12 can assemble at the LC-aqueous interface (both planar and curved interfaces). The assembly can be destroyed by adding trypsin, which catalyzes the hydrolysis of lipopeptides. Fluorescence measurements further confirmed the assembly and deassembly behavior of FAM-lipopeptide-C12 at the LC-aqueous interface. Overall, our work provides a general method for the construction of a biointerface by directly assembling amphiphilic lipopeptides at the LC-aqueous interface, which can potentially be used in selectively detecting the activity of specific enzymes and other biomolecular interactions.