화학공학소재연구정보센터
Langmuir, Vol.35, No.7, 2619-2629, 2019
Controllable Self-Assembly of Amphiphilic Tadpole-Shaped Polymer Single-Chain Nanoparticles Prepared through Intrachain Photo cross-linking
We report the use of intramolecular cross-linking chemistry as a tool to control the self-assembly of amphiphilic diblock copolymers (di-BCPs). Two amphiphilic di-BCPs of poly(N,N'-dimethylacrylamide)-block-polystyrene (PDMA-b-PS) with photo-cross-linkable cinnamoyl groups in either hydrophobic or hydrophilic blocks were prepared using reversible addition fragmentation chain transfer polymerization. Intramolecular photo-cross-linking of cinnamoyl groups led to the formation of tadpole-shaped polymer single-chain nanoparticles (SCNPs) consisting of a self-collapsed block as the "head" and an un-cross-linked block as the "tail". When intramolecular photo-cross-linking was carried out in hydrophobic PS blocks, a clear morphological transition from branched cylindrical micelles (for the linear di-BCP) to completely spherical micelles at a dimerization degree of similar to 63% was observed. A pattern of morphological transitions from cylindrical micelles to spherical micelles is observed through stepwise downsizing the length of cylindrical micelles when increasing the self-collapse degree of PS blocks, whereas, in case of photo-cross-linking carried out in hydrophilic PDMA blocks, the size of micelles showed a dramatic increase due to the shift of hydrophobic-to-hydrophilic balance. When the cross-linking degree of PDMA blocks reached >60%, tadpole-shaped SCNPs assembled into nonconventional aggregates with a nonsmooth surface. Our results illustrate the impact of chain topologies on the self-assembly outcomes of amphiphilic di-BCPs, which likely opens a door to control the micellar morphologies from just one parent linear di-BCP, rather than resynthesizing BPCs with different volume fractions of the two blocks.