Langmuir, Vol.34, No.49, 14921-14931, 2018
Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers
DNA origami nanotechnology is being increasingly used to mimic membrane-associated biophysical phenomena. Although a variety of DNA origami nanostructures has already been produced to target lipid membranes, the requirements for membrane binding have so far not been systematically assessed. Here, we used a set of elongated DNA origami structures with varying placement and number of cholesteryl-based membrane anchors to compare different strategies for their incorporation. Single and multiple cholesteryl anchors were attached to DNA nanostructures using single- and double-stranded DNA spacers of varying length. The produced DNA nanostructures were studied in terms of their membrane binding and diffusion. Our results show that the location and number of anchoring moieties play a crucial role for membrane binding of DNA nanostructures mainly if the cholesteryl anchors are in close proximity to the bulky DNA nanostructures. Moreover, the use of DNA spacers largely overcomes local steric hindrances and thus enhances membrane binding. Fluorescence correlation spectroscopy measurements demonstrate that the distinct physical properties of single- and double-stranded DNA spacers control the interaction of the amphipathic DNA nanostructures with lipid membranes. Thus, we provide a rational basis for the design of amphipathic DNA origami nanostructures to efficiently bind lipid membranes in various environments.