Macromolecules, Vol.52, No.4, 1642-1652, 2019
Synthesis and Aggregation Behavior of Poly(arylene alkenylene)s and Poly(arylene alkylene)s Having Dialkoxyphenylene and Aromatic Diimide Groups
Polycondensation reactions of 2,5-dialkoxy-1,4-diiodobenzene with N,N'-omega-dialkenylpyromellitic diimide and N,N'-omega-dialkenyl naphthalenetetracarboxylic diimide in the presence of a Pd(OAc)(2)-NaOAc catalyst produce six polymers containing the two aromatic groups connected alternatingly by alkenylene spacers. H-1 NMR spectrum of a polymer prepared from 2,5-bis(dodecyloxy)-1,4-diiodobenzene and N,N'-(10-undecenyl)pyromellitic diimide (poly(1a-IA)) indicates that the polymerization involves 2,1- and 1,2-insertion of a vinyl group into the Pd-Ar bond in 70:30 selectivity. Matrix-assisted laser deportion/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) spectra of poly(1a-IA) and a polymer from 2,5-bis(dodecyloxy)-1,4-diiodobenzene with N,N'-dialkenyl naphthalenetetracarboxylic diimide (poly(1a-IIA)) contained a series of polymer fragments with M-n up to 4500. Measurement of electrospray ionization MS (ESI-MS) of the polymers revealed formation of cyclic molecules for 1:1 and 2:2 oligomers. Hydrogenations of poly(1a-IA) by using [Ir(cod)(py)(PCy3)+PF6- (cod = 1,5-cycloctadiene; PCy3 = tricyclohexylphosphine) catalyst and of poly(1a-IIA) by a mixture of p-toluenesulfonyl hydrazide (TSH) and tripropylamine (TPA) produce the poly(arylene alkylene)s with saturated spacers in 93% degree of hydrogenation. The absorption spectrum of poly(1a-IA) in CHCl3 shows an absorption edge at 410 nm, which is at a longer wavelength than that of a mixture of the monomers (370 nm). Light-scattering measurement of the solution (1.00 mmol L-1) indicates the presence of aggregates with a hydrodynamic radius of 48 nm. The polymers exhibit weak elasticity at room temperature, as determined by dynamic viscoelasticity analysis (DMA), and it becomes negligible on heating to 75-80 degrees C (polymer with pyromellitic diimide groups) and 110-122 degrees C (polymer with naphthalenetetracarboxylic diimide groups). The above properties of the polymers are attributed to attractive interaction between the electron-rich alkoxyphenylene and the electron-deficient aromatic diimide groups both in solution and in the solid state.