Materials Research Bulletin, Vol.112, 336-345, 2019
Binary-phase TiO2 modified Bi2MoO6 crystal for effective removal of antibiotics under visible light illumination
A series of binary-phase TiO2 modified Bi2MoO6 nanocrystals have been prepared via a solvothermal-calcination process. Trace TiO2 modification can effectively enhance the visible light catalytic activity of Bi2MoO6 to remove the antibiotics in aqueous solution. The obtained TiO2/Bi2MoO6 composites were investigated by some physicochemical techniques like XRD, N-2 adsorption, SEM, TEM, UV-vis DRS, Raman, XPS, PL and Photo-electrochemical measurement. The presence of TiO2 nanoparticles (NPs) influenced the crystal growth of Bi2MoO6, decreasing the crystal size of Bi2MoO6 and effectively promoting its specific surface area. Moreover, the conduction band of TiO2 can serve as the electron transfer platform, which largely boosts the effective separation of photocarriers at TiO2/Bi2MoO6 heterojunction interface. With optimal TiO2 content (0.41 wt%), TiO2/Bi2MoO6 exhibited the best photocatalytic performance for different antibiotics degradation, e.g. ciprofloxacin, tetracycline and oxytetracyline hydrochloride under visible light irradiation. Moreover, the mechanism for enhanced photocatalytic performance in ciprofloxacin degradation was illuminated.