화학공학소재연구정보센터
Science, Vol.363, No.6428, 719-+, 2019
Printed subthreshold organic transistors operating at high gain and ultralow power
Overcoming the trade-offs among power consumption, fabrication cost, and signal amplification has been a long-standing issue for wearable electronics. We report a high-gain, fully inkjet-printed Schottky barrier organic thin-film transistor amplifier circuit. The transistor signal amplification efficiency is 38.2 siemens per ampere, which is near the theoretical thermionic limit, with an ultralow power consumption of <1 nanowatt. The use of a Schottky barrier for the source gave the transistor geometry-independent electrical characteristics and accommodated the large dimensional variation in inkjet-printed features. These transistors exhibited good reliability with negligible threshold-voltage shift. We demonstrated this capability with an ultralow-power high-gain amplifier for the detection of electrophysiological signals and showed a signal-to-noise ratio of >60 decibels and noise voltage of <0.3 microvolt per hertz(1/2) at 100 hertz.