Korean Journal of Chemical Engineering, Vol.36, No.4, 620-624, April, 2019
Electrochemical characteristics of lithium-excess cathode material (Li1+xNi0.9Co0.05Ti0.05O2) for lithium-ion batteries
E-mail:
A Ni0.9Co0.05Ti0.05(OH)2 precursor was synthesized with the concentration gradient method. To overcome the Li-ion shortage the problem due to the formation of a solid electrolyte interphase (SEI) layer during the initial charge/discharge process in the cathode material, lithium-excess Li1+xNi0.9Co0.05Ti0.05O2 (0≤x≤0.07) cathode materials were investigated by physical and electrochemical analyses. The physical properties of the lithium-excess cathode materials were analyzed using FE-SEM and XRD. A coin type half-cell was fabricated with the electrolyte of 1M LiPF6 dissolved in organic solvents (EC :EMC=1 : 2 vol%). The electrochemical performances were analyzed by the initial charge/discharge efficiency, cycle stability, rate performance and electrochemical impedance spectroscopy (EIS). The initial charge capacity of the cathode material was excellent at about 199.8-201.7mAh/g when the Li/Metal ratio was 1.03-1.07. Additionally, the efficiency of the 6.0 C/0.1 C was 79.2-79.9%. When the Li/Metal ratio was 1.05, the capacity retention showed the highest stability of 97.8% after 50 cycles.
- Fergus JW, J. Power Sources, 195(4), 939 (2010)
- Kraytsberg A, Ein-Eli Y, Adv. Eng. Mater., 2, 922 (2012)
- Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ, Electrochem. Commun., 9, 1228 (2007)
- Ebner W, Fouchard D, Xie L, Solid State Ion., 69(3-4), 238 (1994)
- Rossen E, Jones CDW, Dahn JR, Solid State Ion., 57, 311 (1992)
- Zhong Q, Sacken U, J. Power Sources, 54, 221 (1995)
- Kim J, Amine K, Electrochem. Commun., 3, 52 (2001)
- Liu HS, Li J, Zhang ZR, Gong ZL, Yang Y, Electrochim. Acta, 49(7), 1151 (2004)
- Subramanian V, Fey GTK, Solid State Ion., 148(3-4), 351 (2002)
- Oh P, Myeong S, Cho W, Lee MJ, Ko M, Jeong HY, Cho J, Nano Lett., 14, 5965 (2014)
- Nomura F, Liu YB, Tanabe T, Tamura N, Tsuda T, Hagiwara T, Gunji T, Ohsaka T, Matsumoto F, Electrochim. Acta, 269, 321 (2018)
- Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP, J. Mater. Chem., 22, 13104 (2012)
- Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107 (2017)
- Xie H, Hu G, Du K, Peng Z, Cao Y, J. Alloy. Compd., 666, 84 (2016)
- Li W, Reimers JN, Dahn JR, Phys. Rev. B, 46, 3236 (1992)
- Ohzuku T, Ueda A, Nagayama M, J. Electrochem. Soc., 140, 1862 (1993)
- Dahn JR, Sacken UV, Michal CA, Solid State Ion., 44, 87 (1990)
- Choi YM, Pyun SI, Moon SI, Solid State Ion., 89(1-2), 43 (1996)
- Wu KC, Wang F, Gao LL, Li MR, Xiao LL, Zhao LT, Hu SJ, Wang XJ, Xu ZL, Wu QG, Electrochim. Acta, 75, 393 (2012)
- Wei X, Zhang S, Yang P, Li H, Wang S, Ren Y, Xing Y, Meng J, Int. J. Electrochem. Sci., 12, 5636 (2017)
- Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW, ACS Appl. Mater. Interfaces, 7, 13944 (2015)
- Ko HS, Park HW, Lee JD, Korean Chem. Eng. Res., 56(5), 718 (2018)
- Yoon CS, Choi MH, Lim BB, Lee EJ, Sun YK, J. Electrochem. Soc., 162(14), A2483 (2015)
- Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L, J. Electrochem. Soc., 146(4), 1279 (1999)
- Zhao TL, Chen S, Li L, Zhang XF, Chen RJ, Belharouak I, Wu F, Amine K, J. Power Sources, 228, 206 (2013)