화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.3, 150-154, March, 2019
Effect of MnO2 and CuO Addition on Microstructure and Piezoelectric Properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 Ceramics
E-mail:
This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3, which has a rhombohedral-tetragonal phase boundary composition. MnO2 and CuO-added 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 ceramics sintered at a relatively low temperature of 1020 oC show a pure perovskite phase with no secondary phase. As the addition of MnO2 and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of MnO2.
  1. Takenaka T, Nagata H, J. European Ceram. Soc., 25, 2693 (2005)
  2. Kosec M, Malic B, Bencan A, Rojac T, KNN-based piezoceramics: In Piezoelectric and Acoustic Materials of Transducer Applications, New York (2008).
  3. Rodel J, Kounga ABN, Weissenberger-Eibl M, Koch D, Bierwisch A, Rossner W, Hoffmann MJ, Danzer R, Schneider G, J. European Ceram. Soc., 29, 1549 (2009)
  4. Rodel J, Jo W, Seifert K, Anton EM, Granzow T, Damjanovic D, J. Am. Ceram. Soc., 89, 1153 (2009)
  5. Shrout TR, Zhang S, J. Electroceram., 19, 111 (2007)
  6. Damjanovic D, Klein N, Li J, Porokhonskyy V, Funct. Mater. Lett., 3, 5 (2010)
  7. Park HY, Cho KH, Paik DS, Nahm S, Lee HG, Kim DH, J. Appl. Phys., 102, 124101 (2007)
  8. Song HC, Cho KH, Park HY, Ahn CW, Nahm S, Uchino K, Park SH, J. Am. Ceram. Soc., 90(6), 1812 (2007)
  9. Cheng XJ, Wu JG, Wang XP, Xiao DQ, Zhu JG, Appl. Phys. Lett., 103, 052906 (2013)
  10. Zheng T, Wu J, Xiao D, Zhu J, Wang X, Lou X, J. Mater. Chem. A, 3, 1868 (2015)
  11. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M, Nature, 432, 84 (2004)
  12. Zhang S, Xia R, Shrout TR, J. Electroceram., 19, 251 (2007)
  13. Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ, J. Am. Chem. Soc., 136(7), 2905 (2014)
  14. Zhang MH, Thong HC, Lu YX, Sun W, Li JF, Wang K, J. Korean Ceram. Soc., 54, 261 (2017)
  15. Wang K, Li JF, Liu N, Appl. Phys. Lett., 93, 092904 (2008)
  16. Wu J, Wang Y, Xiao D, Zhu J, Yu P, Wu L, Wu W, Jpn. J. Appl. Phys., 46, 7375 (2007)
  17. Chang YF, Yang Z, Ma D, Liu Z, Wang Z, J. Appl. Phys., 104, 024109 (2008)
  18. Yoo JH, Lee GM, Trans. Electr. Electron. Mater., 19, 375 (2018)
  19. Cheng X, Wu J, Lou X, Wang X, Wang X, Xiao D, Zhu J, ACS Appl. Mater. Interfaces,, 6, 750 (2014)
  20. Zheng T, Wu J, Cheng X, Wang X, Zhang B, Xiao D, Zhu J, Dalton Trans., 43, 9419 (2014)
  21. Zhang B, Wu J, Cheng X, Wang X, Xiao D, Zhu J, Wang X, Lou X, ACS Appl. Mater. Interfaces, 5, 7718 (2013)
  22. Wu J, Xiao J, Zheng T, Wang X, Cheng X, Zhang B, Xiao D, Zhu J, Scr. Mater., 88, 41 (2014)
  23. Shenouda F, Aziz S, J. Appl. Chem., 17, 258 (1967)
  24. Cho KH, Park CS, Priya S, Appl. Phys. Lett., 97, 182902 (2010)