화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.3, 183-188, March, 2019
저온 티타늄 겔을 이용한 플렉시블 염료감응형 태양전지
Flexible Dye-sensitized Solar Cell Using Titanium Gel at Low Temperature
E-mail:
Flexible dye-sensitized solar cells using binder free TiO2 paste for low temperature sintering are developed. In this paste a small amount of titanium gel is added to a paste of TiO2 nanoparticle. Analysis of titanium gel paste prepared at 150 ℃ shows that it has a pure anatase phase in XRD and mesoporous structure in SEM. The formation of the titanium gel 1- 2 nm coated layer is confirmed by comparing the TEM image analysis of the titanium gel paste and the pristine paste. This coating layer improves the excited electron transfer and electrical contact between particles. The J-V curves of the organic binder DSSCs fabricated at 150℃ shows a current density of 0.12 mA/cm2 and an open-circuit voltage of 0.47 V, while the titanium gel DSSCs improves electrical characteristics to 5.04 mA/cm2 and 0.74 V. As a result, the photoelectric conversion efficiency of the organic binder DSSC prepared at low temperature is as low as 0.02 %, but the titanium gel paste DSSCs has a measured effciency of 2.76%.
  1. Gong J, Liang J, Sumathy K, Renew. Sust. Energ. Rev., 16, 5848 (2012)
  2. An HL, Kang HR, Sun HJ, Han JH, Ahn HJ, Korean J. Mater. Res., 25(12), 672 (2015)
  3. O'regan B, Gratzel M, Nature, 353, 737 (1991)
  4. Bae JW, Koo BR, Lee TK, An HJ, J. Korean Powder Metall. Inst., 25, 1 (2018)
  5. Fan K, Li R, Chen J, Shi W, Peng T, Sci. Adv. Mater., 5, 1596 (2013)
  6. Lin LY, Lee CP, Tsai KW, Yeh MH, Chen CY, Vittal R, Wu CG, Ho KC, Prog. Photovoltaics: Res. Appl., 20, 181 (2012)
  7. Kang MG, Park NG, Ryu KS, Chang SH, Kim KJ, Sol. Energy Mater. Sol. Cells, 90(5), 574 (2006)
  8. Miyasaka T, Kijitori Y, J. Electrochem. Soc., 151(11), A1767 (2004)
  9. Pichot F, Pitts JR, Gregg BA, Langmuir, 16(13), 5626 (2000)
  10. Longo C, Freitas J, De Paoli MA, J. Photochem. Photobiol. A-Chem., 159, 33 (2003)
  11. Kado T, Kubota Y, Hayase S, Chem. Lett., 34(7), 1006 (2005)
  12. Haque SA, Palomares E, Upadhyaya HM, Otley L, Potter RJ, Holmes AB, Durrant JR, Chem. Commun., 24, 3008 (2003)
  13. Kado T, Yamaguchi M, Yamada Y, Hayase S, Chem. Lett., 32(11), 1056 (2003)
  14. Lin LY, Lee CP, Vittal R, Ho KC, J. Power Sources, 195(13), 4344 (2010)
  15. Zhang DS, Yoshida T, Oekermann T, Furuta K, Minoura H, Adv. Funct. Mater., 16(9), 1228 (2006)
  16. Li X, Lin H, Li J, Wang N, Lin C, Zhang L, Photochem. Photobiol. A, 195, 247 (2008)
  17. Iwasaki M, Lee CW, Kim TH, Park WK, J. Ceram. Soc. Jpn., 116, 153 (2008)
  18. Uchida S, Tomiha M, Takizawa H, Kawaraya M, Photochem. Photobiol. A, 164, 93 (2004)
  19. Durr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G, Nat. Med., 4, 607 (2005)
  20. Zhang DS, Yoshida T, Minoura H, Chem. Lett., 31(9), 874 (2002)
  21. Livage J, Henry M, Sanchez C, Prog. Solid State Chem., 18, 259 (1988)
  22. Park H, Choi J, Choi JP, Kim WB, Photochem. Photobiol. A, 351, 139 (2018)
  23. Park NG, van de Lagemaat J, Frank AJ, J. Phys. Chem. B, 104(38), 8989 (2000)