화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.2, 226-232, April, 2019
미세조류 Scenedesmus obliquus 영양염류와 중금속(Cu, Zn) 거동특성 및 축산 폐수 처리 적용성 평가
Behavior of Nutrients and Heavy Metals (Cu, Zn) and Applicability Evaluation from Swine Wastewater Treatment Using Microalga Scenedesmus obliquus
E-mail:
초록
기존의 축산폐수 처리 공정보다 생물학적 처리 공정은 친환경적이며 다양한 목적으로 폐수에서 효율적으로 이용될 수 있다. 특히, 생물학적 처리 공정 중 미세 조류를 이용한 폐수처리는 경제적으로 영양염류를 제거할 수 있으며, 재생 에너지원으로서 많은 이점을 가지고 있어 주목받고 있다. 본 연구에서는 미세 조류 Scenedesmus obliquus의 최적 성장 조건을 확립하고, 인공 폐수와 실제 축산폐수에서 영양염류(N, P)와 중금속(Cu, Zn) 제거 효율을 평가하였다. 연구 결과, 최적 성장 조건은 28 ℃, pH 7, light : dark cycle은 14 : 10 h로 확립되었다. 농도(500, 1,000, 5,000, 10,000 mg/L)별영양염류의 제거율 평가에서 단일 처리구는 N 17.6~70%, P 8.4~34%, 복합 처리구는 N 12~58%, P 3~40.3%의 제거율을 보였다. 또한, 농도(10, 30, 50 mg/L)별 중금속의 제거율 평가에서 단일 처리구는 Cu 13.7~40.3%, Zn 10.0~30.0%, 복합 처리구는 Cu 16.0~40.0%, Zn 12.0~20.0%의 제거율을 보였다. 중금속 복합 처리구(10, 30, 50 mg/L)에서 각 농도별로 Cu는 16.0~40.0%, Zn은 12.0~20.0%의 제거율을 보였다. 연구 결과를 바탕으로 Scenedesmus obliquus의 영양염류와 중금속에서의 거동 특성을 파악하여 실제 축산 폐수 처리에 적합함을 판단하였다.
The biological wastewater treatment is more eco-friendly and can be used effectively in wastewater for a variety of purposes than that of the conventional treatment. In particular, the wastewater treatment using microalgae in biological treatment processes has attracted great attention due to its ability to remove economically nutrients from wastewater and have many advantages as a renewable energy source. This study was investigated to establish the optimal growth conditions for microalga Scenedesmus obliquus. Additionally, the removal efficiencies of nutrients (N, P) and heavy metals (Cu, Zn) from the synthetic wastewater were evaluated. As a results, the optimal growth conditions were established at 28 ℃, pH 7, and light and dark cycle of 14 : 10 h. In the evaluation of nutrient removal efficiencies at each concentrations of 500, 1,000, 5,000, and 10,000 mg/L, the removal rates were 17.6~70% N and 8.4~34% P in the single treatment and 12.0~58.0% N and 3.0~40.3% P in the binary mixture treatment. In addition, the evaluation of heavy metal removal efficiencies at each concentrations of 10, 30 and 50 mg/L, the removal rates were 13.7~40.3% Cu and 10.0~30.0% Zn in the single treatment and 16.0~40.0% Cu and 12.0~20.0% Zn in the binary mixture treatment. Based on the results of the study, it appears that Scenedesmus obliquus can be used for the removal of nutrients and heavy metals from the swine wastewater.
  1. Doshi H, Ray A, Kothari IL, Curr. Microbiol., 54(3), 213 (2007)
  2. Obaja D, Mace S, Costa J, Sans C, Mata-Alvarez J, Bioresour. Technol., 87(1), 103 (2003)
  3. Vohla C, Koiv M, Bavor HJ, Chazarenc F, Mander U, J. Ecol. Eng., 37(1), 70 (2011)
  4. Ruiz J, Arbib Z, Alvarez-Diaz PD, Garrido-Perez C, Barragan J, Perales JA, J. Biotechnol., 178, 32 (2014)
  5. Richmond A, Grobbelaar JU, Biomass, 10(4), 253 (1986)
  6. Lau PS, Tam NFY, Wong YS, J. Environ. Pollut., 89(1), 59 (1995)
  7. Kong QX, Li L, Martinez B, Chen P, Ruan R, Appl. Biochem. Biotechnol., 160(1), 9 (2010)
  8. Sanchez S, Martinez M, Espejo MT, Pacheco R, Espinola F, Hodaifa G, J. Appl. Phycol., 13(5), 443 (2001)
  9. Shi J, Podola B, Melkonian M, J. Appl. Phycol., 19(5), 417 (2007)
  10. Park KY, J. Korean Soc. Agric. Eng., 53(1), 63 (2011)
  11. Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J, Bioresour. Technol., 98(11), 2220 (2007)
  12. Sancho MM, Castillo JMJ, El Yousfi F, Process Biochem., 34(8), 811 (1999)
  13. Kim DG, La HJ, Ahn CY, Park YH, Oh HM, Bioresour. Technol., 102(3), 3163 (2011)
  14. Choi HJ, Lee SM, J. Korean Soc. Environ. Eng., 33(7), 511 (2011)
  15. Cassidy KO, Evaluating Algal Growth at Different Temperatures, MS Thesis, University of Kentucky, Lexington, U.S.A. (2011).
  16. Hodaifa G, Martinez ME, Sanchez S, Eng. Life Sci., 10(3), 257 (2010)
  17. Guedes AC, Amaro HM, Pereira RD, Malcata FX, Biotechnol. Prog., 27(5), 1218 (2011)
  18. Oh EJ, Hwang IS, Yoo J, Chung KY, J. Environ. Sci. Int., 27(11), 1059 (2018)
  19. Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T, Proceedings of the World Congress on Engineering, July, 4-6, WCE, London, U.K., 1, 4-6 (2012).
  20. Bouterfas R, Belkoura M, Dauta A, Limnetica, 25(3), 647 (2006)
  21. Xu Y, Ibrahim IM, Harvey PJ, Plant Physiol. Biochem., 106, 305 (2016)
  22. Mostert ES, Grobbelaar JU, Biomass, 13(4), 219 (1987)
  23. Li YQ, Horsman M, Wang B, Wu N, Lan CQ, Appl. Microbiol. Biotechnol., 81(4), 629 (2008)
  24. Kallqvist T, Svenson A, Water Res., 37(3), 477 (2003)
  25. Borowitzka MA, Wastewater Treatment with Algae, 203-226. Springer. Berlin, Heidelberg, Germany (1998).
  26. Mangaiyarkarasi A, ramani DG, Naveena M, Int. J. Pharma Bio Sci., 8(3), 615 (2017)
  27. Park CJ, Yang JE, Ryu KR, Zhang YS, Kim WI, Korean J. Environ. Agric., 23(4), 240 (2004)
  28. Park MK, Lee SJ, Seo HH, Kim HS, Kim YH, Yoon BD, Oh HM, Algae, 13(2), 227 (1998)
  29. Bulgariu D, Bulgariu L, Bioresour. Technol., 103(1), 489 (2012)
  30. Kim IB, Suh JH, Lee HS, J. Korean Soc. Environ. Adm., 7(1), 77 (2001)
  31. Zabochnicka-Swiatek M, Krzywonos M, Pol. J. Environ. Stud., 23(2), 551 (2014)
  32. Seo HN, Lee MH, Wang SK, J. Soil Groundw. Environ., 18(4), 8 (2013)