Journal of Industrial and Engineering Chemistry, Vol.73, 52-57, May, 2019
Control of 1-dimensionally structured tungsten oxide thin films by precursor feed rate modulation in flame vapor deposition
E-mail:
Flame vapor deposition (FVD) process is the fast and effective method to prepare high quality 1-D
nanostructured tungsten oxide thin film, which has several advantages in photoelectrochemical (PEC) water splitting such as more sunlight absorption, straight electron path and short diffusion length of electron hole. The precursor concentration in FVD process is the most important process variable to determine the morphology of prepared nanostructures. In this study, the precursor concentration in FVD process was controlled precisely and flexibly by adjusting the tungsten feed rate with the wire feeding device which we developed. Several interesting nanostructures were prepared in FVD process by modulating the precursor concentration with time and the reasonable growth mechanisms for developments of those nanostructures are also proposed. The narrower and longer 1-D tungsten oxide nanostructure could be prepared by controlling the precursor feed rate and deposition time in FVD process, which is desirable for efficient PEC water splitting.
Keywords:Preparation of 1-D nanostructure;Tungsten oxide thin film;Flame vapor deposition;Precursor feed rate;Nanostructure control
- Wachs IE, Kim T, Ross EI, Catal. Today, 116(2), 162 (2006)
- Hammond C, Straus J, Righettoni M, Pratsinis SE, Hermans I, ACS Catal., 3(3), 321 (2013)
- Huang K, Pan Q, Yang F, Ni S, Wei X, He D, J. Phys. D-Appl. Phys., 41(15), 155417 (2008)
- Yoon S, Jo C, Noh SY, Lee CW, Song JH, Lee J, Phys. Chem. Chem. Phys., 13(23), 11060 (2011)
- Zheng HD, Tachibana Y, Kalantar-zadeh K, Langmuir, 26(24), 19148 (2010)
- Niklasson GA, Granqvist CG, J. Mater. Chem., 17(2), 127 (2007)
- More AJ, Patil RS, Dalavi DS, Suryawanshi MP, Burungale VV, Kim JH, Patil PS, J. Electron. Mater., 46(2), 974 (2017)
- Righettoni M, Tricoli A, Pratsinis SE, Chem. Mater., 22(10), 3152 (2010)
- Cao B, Chen J, Tang X, Zhou W, J. Mater. Chem., 19(16), 2323 (2009)
- Ding JR, Kim KS, AIChE J., 62(2), 421 (2016)
- Liu X, Wang F, Wang Q, Phys. Chem. Chem. Phys., 14(22), 7894 (2012)
- Butler MA, Nasby RD, Quinn RK, Solid State Commun., 19(10), 1011 (1976)
- Kudo A, Miseki Y, Chem. Soc. Rev., 38(1), 253 (2009)
- Wang F, Di Valentin C, Pacchioni G, J. Phys. Chem. C, 116(16), 8901 (2012)
- Zheng JY, Haider Z, Van TK, Pawar AU, Kang MJ, Kim CW, Kang YS, CrystEngComm, 17(32), 6070 (2015)
- Rao PM, Cho IS, Zheng X, Proc. Combust. Inst., 34(2), 2187 (2013)
- Biswas SK, Baeg JO, Moon SJ, Kong K, So WW, J. Nanopart. Res., 14(1), 667 (2012)
- Chakrapani V, Thangala J, Sunkara MK, Int. J. Hydrog. Energy, 34(22), 9050 (2009)
- Yang J, Li W, Li J, Sun D, Chen Q, J. Mater. Chem., 22(34), 17744 (2012)
- Su J, Feng X, Sloppy JD, Guo L, Grimes CA, Nano Lett., 11(1), 203 (2011)
- Amano F, Tian M, Wu G, Ohtani B, Chen A, ACS Appl. Mater. Interfaces, 3(10), 4047 (2011)
- Kim H, Senthil K, Yong K, Mater. Chem. Phys., 120(2-3), 452 (2010)
- Hong K, Xie M, Hu R, Wu H, Nanotechnology, 19(8), 85604 (2008)
- Thangala J, Vaddiraju S, Bogale R, Thurman R, Powers T, Deb B, Sunkara MK, Small, 3(5), 890 (2007)
- Ding JR, Yoon SH, Kim KS, J. Nanosci. Nanotechnol., 17(4), 2780 (2017)
- Ding JR, Kim KS, Chem. Eng. J., 300, 47 (2016)
- Ding JR, Kim KS, J. Nanosci. Nanotechnol., 16(2), 1578 (2016)
- Rao PM, Zheng X, Proc. Combust. Inst., 33(2), 1891 (2011)
- Ding JR, Yoon SH, Kim KS, J. Nanosci. Nanotechnol., 18(3), 2231 (2018)