화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.73, 106-117, May, 2019
Exfoliated nanosheets of Co3O4 webbed with polyaniline nanofibers: A novel composite electrode material for enzymeless glucose sensing application
E-mail:,
A novel glucose biosensor was designed using cobalt oxide (Co3O4) nanosheets patterned by π-conjugated polyaniline nanofibers (PANINFs). A facile synthesis process was conducted to obtain cost-effective and ecofriendly mesoporous Co3O4@PANINFs hybrid nanomaterial for the first time. The Co3O4@PANINFs on glassy carbon electrode (GCE), working as a biosensor electrode based on electrochemical technique, showed electrocatalytic activity to glucose with sensitivity of 14.25 μA mM-1cm-2, linear range from (0.1 to 8) mM, minimum detection limit of 0.06 mM, and response time <6 s. Moreover, the biosensor was employed to monitor glucose concentration in human serum sample to provide effective sensing results.
  1. Lowell BB, Shulman GI, Science, 307(5708), 384 (2005)
  2. WHD16-press-release-EN_3.pdf
  3. Shrestha BK, et al., Sci. Rep., 7(1), 16191 (2017)
  4. Park J, et al., Sci. Adv., 4(1) (2018)
  5. Ahmad R, et al., Analytical Chem., 85(21), 10448 (2013)
  6. Steiner MS, Duerkop A, Wolfbeis OS, Chem. Soc. Rev., 40(9), 4805 (2011)
  7. Shrestha BK, Ahmad R, Mousa HM, Kim IG, Kim JI, Neupane MP, Park CH, Kim CS, J. Colloid Interface Sci., 482, 39 (2016)
  8. Lin S, et al., Biosens. Bioelectron., 110, 89 (2018)
  9. Heller A, Feldman B, Chem. Rev., 108(7), 2482 (2008)
  10. Zhao Y, et al., Sens. Actuators B-Chem., 255, 1753 (2018)
  11. Thanh TD, et al., Carbon, 98, 90 (2016)
  12. Liu M, Liu R, Chen W, Biosens. Bioelectron., 45, 206 (2013)
  13. Dhara K, Mahapatra DR, Microchi. Acta 185(1), p49 (2017).
  14. Ragupathy D, Lee SC, Al-Deyab SS, Rajendren A, J. Ind. Eng. Chem., 20(3), 930 (2014)
  15. Cosnier S, Biosens. Bioelectron., 14(5), 443 (1999)
  16. Park S, Boo H, Chung TD, Anal. Chim. Acta, 556(1), 46 (2006)
  17. Ferri S, Kojima K, Sode K, J. Diab. Sci. Technol., 5(5), 1068 (2011)
  18. Yu HR, Kim JG, Im JS, Bae TS, Lee YS, J. Ind. Eng. Chem., 18(2), 674 (2012)
  19. Hyunjae L, et al., Adv. Healthcare Mater., 7(8), 170115 (2018)
  20. Zhao Y, et al., Talanta, 155, 265 (2016)
  21. Moon JM, et al., Biosens. Bioelectron., 102, 540 (2018)
  22. Zhang X, et al., Microchim. Acta, 184(11), 4367 (2017)
  23. Ahmad R, et al., Mater. Today Commun., 17, 289 (2018)
  24. Scodeller P, Flexer V, Szamocki R, Calvo EJ, Tognalli N, Troiani H, Fainstein A, J. Am. Chem. Soc., 130(38), 12690 (2008)
  25. Jiang LC, Zhang WD, Biosens. Bioelectron., 25(6), 1402 (2010)
  26. Jianwei N, et al., Small, 9(18), 3147 (2013)
  27. Benjamin M, et al., Biosens. Bioelectron., 91, 380 (2017)
  28. Xia XH, et al., ACS Appl. Mater. Interfaces, 2(1), 186 (2010)
  29. Ni Y, et al., Talanta, 185, 335 (2018)
  30. Liu QC, et al., J. Mater. Chem. A, 2(17), 6081 (2014)
  31. Kannan P, et al., Analyst, 142(22), 4299 (2017)
  32. Lang XY, et al., Nat. Commun., 4, 2169 (2013)
  33. Balamurugan J, et al., Biosens. Bioelectron., 89, 970 (2017)
  34. Wang L, et al., Sens. Actuators B-Chem., 195, 1 (2014)
  35. Ramesh S, et al., RSC Adv., 7(80), 50912 (2017)
  36. Adhikari B, Majumdar S, Prog. Polym. Sci, 29(7), 699 (2004)
  37. Hatchett DW, Josowicz M, Chem. Rev., 108(2), 746 (2008)
  38. Shrestha BK, et al., Biosens. Bioelectron., 94, 686 (2017)
  39. Shoji E, Freund MS, J. Am. Chem. Soc., 123(14), 3383 (2001)
  40. Shin YJ, Kim SH, Yang DH, Kwon H, Shin JS, J. Ind. Eng. Chem., 16(3), 380 (2010)
  41. Yu Z, et al., Biosens. Bioelectron., 75, 161 (2016)
  42. Ameen S, Akhtar MS, Shin HS, Appl. Catal. A: Gen., 517, 21 (2016)
  43. Hutchings GS, Zhang Y, Li J, Yonemoto BT, Zhou XG, Zhu KK, Jiao F, J. Am. Chem. Soc., 137(12), 4223 (2015)
  44. Dutta K, Kundu PP, Polym. Rev., 54(3), 401 (2014)
  45. Bowers ML, Yenser BA, Anal. Chim. Acta, 243, 43 (1991)
  46. Conway B, Novak D, J. Electrochem. Soc., 128(11), 2262 (1981)
  47. Adams PN, Monkman AP, Synth. Met., 87(2), 165 (1997)
  48. Wu CG, Bein T, Science, 264(5166), 1757 (1994)
  49. Adams PN, Laughlin PJ, Monkman AP, Kenwright AM, Polymer, 37(15), 3411 (1996)
  50. Ma CY, Mu Z, Li JJ, Jin YG, Cheng J, Lu GQ, Hao ZP, Qiao SZ, J. Am. Chem. Soc., 132(8), 2608 (2010)
  51. Wang Y, et al., Sci. Rep., 6, 12883 (2016)
  52. Xia X, et al., Nano Lett., 13(9), 4562 (2013)
  53. Kundu S, Jayachandran M, J. Nanopart. Res., 15(4), 1543 (2013)
  54. Xia YY, Wang YG, Li HG, Adv. Mater., 18, 2619 (2006)
  55. Wang B, et al., Nat. Commun., 8, 14839 (2017)
  56. Chiou NR, Lee LJ, Epstein AJ, Chem. Mater., 19(15), 3589 (2007)
  57. Higuchi M, Imoda D, Hirao T, Macromolecules, 29(25), 8277 (1996)
  58. Zhang X, et al., Inorg. Chem. Front., 5(2), 344 (2018)
  59. Cai Z, et al., Adv. Energy Mater., 8(3), 170169 (2018)
  60. Wang Y, et al., Adv. Eng. Mater., 4(16), 140069 (2014)
  61. Kang ET, Neoh KG, Tan KL, Polym. J., 21, 873 (1989)
  62. Mawad D, et al., Sci. Adv., 2(11) (2016)
  63. Zeng XR, Ko TM, Polymer, 39(5), 1187 (1998)
  64. Liang HW, Wei W, Wu ZS, Feng XL, Mullen K, J. Am. Chem. Soc., 135(43), 16002 (2013)
  65. Wang L, Feng X, Ren LT, Piao QH, Zhong JQ, Wang YB, Li HW, Chen YF, Wang B, J. Am. Chem. Soc., 137(15), 4920 (2015)
  66. Su Y, Luo B, Zhang JZ, Anal. Chem., 88(3), 1617 (2016)
  67. Garjonyte R, Malinauskas A, Biosens. Bioelectron., 15(9), 445 (2000)
  68. Zhai D, et al., ACS Nano, 7(4), 3540 (2013)
  69. Forzani ES, et al., Nano Lett., 4(9), 1785 (2004)
  70. Tahir ZM, Alocilja EC, Grooms DL, Biosens. Bioelectron., 20(8), 1690 (2005)