화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.2, 282-288, March, 2019
황-시트랄 공중합체의 합성 및 리튬-황 전지용 양극 소재로의 응용
Synthesis of Sulfur-Citral Copolymers and Their Application to Cathode Materials for Lithium-Sulfur Batteries
E-mail:,
초록
리튬-황 전지는 지난 십여 년간 많은 관심 속에 연구되었지만, 장기적으로 전지 성능 저하를 야기하는 폴리설파이드 용출 문제가 여전히 당면 과제로 남아있다. 본 논문에서는 천연물 유래인 시트랄에 역가황 반응을 통하여 리튬-황 전지에 적용 가능한 효과적인 양극 활 물질을 제조하였다. 역가황 반응 시, 원소 황과 시트랄의 당량비를 조절하여 78-93%의 높은 황 함유랑을 갖는 황-시트랄 공중합체를 합성하였다. 특히, 89%의 황 함유량을 갖는 황-시트랄 공중합체를 양극 활 물질로 적용한 리튬-황 전지는 폴리설파이드 용출이 제한됨을 확인하였고, 그에 따라 우수한 용량 유지율을 보였다. 이는 공중합체에 존재하는 미반응 원소 황이 적을뿐 아니라, 전해액에 불용성인 긴 폴리설파이드 사슬의 함량이 높기 때문이다.
Lithium-sulfur batteries (LSBs) have been of particular interest over the last decade but the long-term problem of polysulfide elution that causes deterioration of cell performance remains a challenge. Herein, an effective cathode active material applicable to LSBs was prepared through the inverse vulcanization reaction of citral, a natural product. During the inverse vulcanization reaction, a sulfur-citral copolymer (SCPs) having a high sulfur content of 78-93% was prepared by controlling the equivalence ratio of elemental sulfur and citral. In particular, LSBs, in which a sulfur-citral copolymer having a sulfur content of 89% was applied as a cathode active material, were confirmed to have limited polysulfide elution, and thus showed excellent capacity retention. This is attributed to the large content of electrolyte-insoluble long polymer chains as well as low content of unreacted elemental sulfur presented in polymer chain.
  1. Rauchfuss TB, Nat. Chem., 3, 648 (2011)
  2. Angelici RJ, Accounts Chem. Res., 21, 387 (1988)
  3. Ji X, Nazar LF, J. Mater. Chem., 20, 9821 (2010)
  4. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS, Chem. Rev., 114(23), 11751 (2014)
  5. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF, Nat. Commun., 6, 5682 (2015)
  6. Wang DW, Zeng Q, Zhou G, Yin L, Li F, Cheng HM, Gentle IR, Lu GQM, J. Mater. Chem. A, 1, 9382 (2013)
  7. Ji XL, Lee KT, Nazar LF, Nat. Mater., 8(6), 500 (2009)
  8. Evers S, Nazar LF, Accounts Chem. Res., 46, 1135 (2013)
  9. Yang Y, Zheng G, Cui Y, Chem. Soc. Rev., 42, 3018 (2013)
  10. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA, Angew. Chem.-Int. Edit., 50, 5904 (2011)
  11. Raccichini R, Varzi A, Passerini S, Scrosati B, Nat. Mater., 14, 271 (2014)
  12. Zhang L, Ji L, Glans PA, Zhang Y, Zhu Y, Guo J, Phys. Chem. Chem. Phys., 14, 13670 (2012)
  13. Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Engelhard MH, Zhang JG, Liu J, Xiao J, Nano Lett., 14, 2345 (2014)
  14. Zhao Z, Wang S, Liang R, Li Z, Shi Z, Chen G, J. Mater. Chem. A, 2, 13509 (2014)
  15. Zhou J, Li R, Fan X, Chen Y, Han R, Li W, Zheng J, Wang B, Li X, Energy Environ. Sci., 7, 2715 (2014)
  16. Simmonds AG, Griebel JJ, Park J, Kim KR, Chung WJ, et al., ACS Macro Lett., 3, 229 (2014)
  17. Je SH, Hwang TH, Talapaneni SN, Buyukcakir O, Kim HJ, Yu JS, Woo SG, Jang MC, Son BK, Coskun A, Choi JW, ACS Energy Lett., 1, 566 (2016)
  18. Kim H, Lee J, Ahn H, Kim O, Park MJ, Nat. Commun., 6, 7278 (2015)
  19. Zhang YY, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J, J. Polym. Sci. A: Polym. Chem., 55(1), 107 (2017)
  20. Hoefling A, Nguyen DT, Partovi-Azar P, Sebastiani D, Theato P, Song SW, Lee YJ, Chem. Mater., 30, 2915 (2018)
  21. Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, et al., Nat. Chem., 5, 518 (2013)
  22. Meyer B, Chem. Rev., 76, 367 (1976)
  23. Sun Z, Xiao M, Wang S, Han D, Song S, Chen G, Meng Y, J. Mater. Chem. A, 2, 9280 (2014)
  24. Gomez I, Mecerreyes D, Blazquez JA, Leonet O, Ben Youcef H, Li CM, Gomez-Camer JL, Bundarchuk O, Rodriguez-Martinez L, J. Power Sources, 329, 72 (2016)
  25. Benedetii A, Fabretti AC, Franchini GC, Polyhedron, 4, 2059 (1985)
  26. Shukla S, Ghosh A, Sen UK, Roy PK, Mitra S, Lochab B, ChemistrySelect, 1, 594 (2016)
  27. Clerici A, Porta O, J. Org. Chem., 54, 3872 (1989)