Polymer(Korea), Vol.43, No.2, 282-288, March, 2019
황-시트랄 공중합체의 합성 및 리튬-황 전지용 양극 소재로의 응용
Synthesis of Sulfur-Citral Copolymers and Their Application to Cathode Materials for Lithium-Sulfur Batteries
E-mail:,
초록
리튬-황 전지는 지난 십여 년간 많은 관심 속에 연구되었지만, 장기적으로 전지 성능 저하를 야기하는 폴리설파이드 용출 문제가 여전히 당면 과제로 남아있다. 본 논문에서는 천연물 유래인 시트랄에 역가황 반응을 통하여 리튬-황 전지에 적용 가능한 효과적인 양극 활 물질을 제조하였다. 역가황 반응 시, 원소 황과 시트랄의 당량비를 조절하여 78-93%의 높은 황 함유랑을 갖는 황-시트랄 공중합체를 합성하였다. 특히, 89%의 황 함유량을 갖는 황-시트랄 공중합체를 양극 활 물질로 적용한 리튬-황 전지는 폴리설파이드 용출이 제한됨을 확인하였고, 그에 따라 우수한 용량 유지율을 보였다. 이는 공중합체에 존재하는 미반응 원소 황이 적을뿐 아니라, 전해액에 불용성인 긴 폴리설파이드 사슬의 함량이 높기 때문이다.
Lithium-sulfur batteries (LSBs) have been of particular interest over the last decade but the long-term problem of polysulfide elution that causes deterioration of cell performance remains a challenge. Herein, an effective cathode active material applicable to LSBs was prepared through the inverse vulcanization reaction of citral, a natural product. During the inverse vulcanization reaction, a sulfur-citral copolymer (SCPs) having a high sulfur content of 78-93% was prepared by controlling the equivalence ratio of elemental sulfur and citral. In particular, LSBs, in which a sulfur-citral copolymer having a sulfur content of 89% was applied as a cathode active material, were confirmed to have limited polysulfide elution, and thus showed excellent capacity retention. This is attributed to the large content of electrolyte-insoluble long polymer chains as well as low content of unreacted elemental sulfur presented in polymer chain.
- Rauchfuss TB, Nat. Chem., 3, 648 (2011)
- Angelici RJ, Accounts Chem. Res., 21, 387 (1988)
- Ji X, Nazar LF, J. Mater. Chem., 20, 9821 (2010)
- Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS, Chem. Rev., 114(23), 11751 (2014)
- Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF, Nat. Commun., 6, 5682 (2015)
- Wang DW, Zeng Q, Zhou G, Yin L, Li F, Cheng HM, Gentle IR, Lu GQM, J. Mater. Chem. A, 1, 9382 (2013)
- Ji XL, Lee KT, Nazar LF, Nat. Mater., 8(6), 500 (2009)
- Evers S, Nazar LF, Accounts Chem. Res., 46, 1135 (2013)
- Yang Y, Zheng G, Cui Y, Chem. Soc. Rev., 42, 3018 (2013)
- Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA, Angew. Chem.-Int. Edit., 50, 5904 (2011)
- Raccichini R, Varzi A, Passerini S, Scrosati B, Nat. Mater., 14, 271 (2014)
- Zhang L, Ji L, Glans PA, Zhang Y, Zhu Y, Guo J, Phys. Chem. Chem. Phys., 14, 13670 (2012)
- Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Engelhard MH, Zhang JG, Liu J, Xiao J, Nano Lett., 14, 2345 (2014)
- Zhao Z, Wang S, Liang R, Li Z, Shi Z, Chen G, J. Mater. Chem. A, 2, 13509 (2014)
- Zhou J, Li R, Fan X, Chen Y, Han R, Li W, Zheng J, Wang B, Li X, Energy Environ. Sci., 7, 2715 (2014)
- Simmonds AG, Griebel JJ, Park J, Kim KR, Chung WJ, et al., ACS Macro Lett., 3, 229 (2014)
- Je SH, Hwang TH, Talapaneni SN, Buyukcakir O, Kim HJ, Yu JS, Woo SG, Jang MC, Son BK, Coskun A, Choi JW, ACS Energy Lett., 1, 566 (2016)
- Kim H, Lee J, Ahn H, Kim O, Park MJ, Nat. Commun., 6, 7278 (2015)
- Zhang YY, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J, J. Polym. Sci. A: Polym. Chem., 55(1), 107 (2017)
- Hoefling A, Nguyen DT, Partovi-Azar P, Sebastiani D, Theato P, Song SW, Lee YJ, Chem. Mater., 30, 2915 (2018)
- Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, et al., Nat. Chem., 5, 518 (2013)
- Meyer B, Chem. Rev., 76, 367 (1976)
- Sun Z, Xiao M, Wang S, Han D, Song S, Chen G, Meng Y, J. Mater. Chem. A, 2, 9280 (2014)
- Gomez I, Mecerreyes D, Blazquez JA, Leonet O, Ben Youcef H, Li CM, Gomez-Camer JL, Bundarchuk O, Rodriguez-Martinez L, J. Power Sources, 329, 72 (2016)
- Benedetii A, Fabretti AC, Franchini GC, Polyhedron, 4, 2059 (1985)
- Shukla S, Ghosh A, Sen UK, Roy PK, Mitra S, Lochab B, ChemistrySelect, 1, 594 (2016)
- Clerici A, Porta O, J. Org. Chem., 54, 3872 (1989)