화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.5, 511-514, May, 2019
Enhanced Separation Performance of Stabilized Olefin Transport Membranes with High-Molecular-Weight Poly(ethylene oxide)
E-mail:
We found that membranes consisting of poly(ethylene oxide) (PEO), AgBF4, and Al(NO3)3 exhibit relatively high permeance, i.e., 20 gel permeation unit (GPU) with a mixed-gas selectivity of 10 for propylene/propane separation. To enhance separation, high-molecular-weight PEO was utilized as polymer matrix. As a result, when 9.0×105 g/mol PEO was utilized, the PEO/AgBF4/Al(NO3)3 electrolyte membranes showed permeance of 32 GPU with a selectivity of 11, as well as demonstrating long-term stability. It was found that longer polymer chains could enable extensive segmental motions that enhance olefin diffusion, thereby improving gas performance. Furthermore, the more viscous aqueous solution of high-molecular-weight PEO enabled the formation of a thinner layer, thus improving the mix-gas permeance of the membrane, using the same conditions as low-molecular-weight PEOs. The coordination interactions of metal ions and ether moieties in the same electrolyte membrane were investigated by FT-IR and X-ray photoelectron spectroscopy.
  1. Yang RT, Kikkinides ES, AIChE J., 41(3), 509 (1995)
  2. Ren T, Patel M, Blok K, Energy, 31(4), 425 (2006)
  3. Ruthve DM, Reyes SC, Microporous Mesoporous Mater., 104, 59 (2007)
  4. Krokidas P, Castier M, Economou IG, J. Phys. Chem. C, 121, 17999 (2017)
  5. Verploegh RJ, Nair S, Sholl DS, J. Am. Chem. Soc., 137(50), 15760 (2015)
  6. Lee MJ, Hamid MRA, Lee J, Kim JS, Lee YM, Jeong HK, J. Membr. Sci., 559, 28 (2018)
  7. Herm ZR, Bloch ED, Long JR, Chem. Mater., 26, 323 (2014)
  8. Yu J, Wang CQ, Xiang L, Xu YZ, Pan YC, Chem. Eng. Sci., 179, 1 (2018)
  9. Gucuyener C, van den Bergh J, Gascon J, Kapteijn F, J. Am. Chem. Soc., 132(50), 17704 (2010)
  10. Li B, Wang H, Chen B, Chem. Asian J., 9, 1474 (2014)
  11. Li B, Wen HM, Zhou W, Chen B, J. Phys. Chem. Lett., 5, 3468 (2014)
  12. Lee JH, Kwon HT, Bae S, Kim J, Kim JH, Sep. Purif. Technol., 207, 427 (2018)
  13. Grantom RL, Royer DJ, Ethylene, Ullmann's Encyclopedia of Industrial Chemistry, VCH, New York, 5th ed., 1987.
  14. Wang K, Stiefel EI, Science, 291, 106 (2001)
  15. Smith KA, Meldon JH, Colton CK, AIChE J., 19, 102 (1973)
  16. Ho WS, Dalrymple DC, J. Membr. Sci., 91(1-2), 13 (1994)
  17. Azhin M, Kaghazchi T, Rahmani M, J. Ind. Eng. Chem., 14(5), 622 (2008)
  18. Hong SU, Jin JH, Won J, Kang YS, Adv. Mater., 12(13), 968 (2000)
  19. Staudt-Bickel C, Koros WJ, J. Membr. Sci., 170(2), 205 (2000)
  20. Giannakopoulos IG, Nikolakis V, Ind. Eng. Chem. Res., 44, 226 (2004)
  21. Chng ML, Xiao Y, Chung TS, Toriida M, Tamai S, Carbon, 47, 1857 (2009)
  22. Li FY, Li Y, Chung TS, Kawi S, J. Membr. Sci., 356(1-2), 14 (2010)
  23. Qiao ZH, Wang Z, Zhang CX, Yuan SJ, Zhu YQ, Wang JX, Wang SC, AIChE J., 59(1), 215 (2013)
  24. Pinnau I, Toy LG, J. Membr. Sci., 184(1), 39 (2001)
  25. Pinnau I, Toy LG, Casillas C, US Patent 5,670,051 (23 Sep. 1997).
  26. Ryu JH, Lee H, Kim YJ, Kang YS, Kim HS, Chem. Eur. J., 7, 1525 (2001)
  27. Kang SW, Kim JH, Won J, Kang YS, J. Membr. Sci., 445, 156 (2013)
  28. Song D, Kang YS, Kang SW, J. Membr. Sci., 474, 273 (2015)
  29. Li Y, Hu Y, RSC Adv., 4, 51022 (2014)
  30. Nakajima K, Nagaoka S, Kawakami H, Polym. Adv. Technol., 14, 433 (2003)
  31. Halim A, Fu Q, Yong Q, Gurr PA, Kentish SE, Qiao GG, J. Mater. Chem. A, 2, 4999 (2014)