Macromolecular Research, Vol.27, No.5, 511-514, May, 2019
Enhanced Separation Performance of Stabilized Olefin Transport Membranes with High-Molecular-Weight Poly(ethylene oxide)
E-mail:
We found that membranes consisting of poly(ethylene oxide) (PEO), AgBF4, and Al(NO3)3 exhibit relatively high permeance, i.e., 20 gel permeation unit (GPU) with a mixed-gas selectivity of 10 for propylene/propane separation. To enhance separation, high-molecular-weight PEO was utilized as polymer matrix. As a result, when 9.0×105 g/mol PEO was utilized, the PEO/AgBF4/Al(NO3)3 electrolyte membranes showed permeance of 32 GPU with a selectivity of 11, as well as demonstrating long-term stability. It was found that longer polymer chains could enable extensive segmental motions that enhance olefin diffusion, thereby improving gas performance. Furthermore, the more viscous aqueous solution of high-molecular-weight PEO enabled the formation of a thinner layer, thus improving the mix-gas permeance of the membrane, using the same conditions as low-molecular-weight PEOs. The coordination interactions of metal ions and ether moieties in the same electrolyte membrane were investigated by FT-IR and X-ray photoelectron spectroscopy.
- Yang RT, Kikkinides ES, AIChE J., 41(3), 509 (1995)
- Ren T, Patel M, Blok K, Energy, 31(4), 425 (2006)
- Ruthve DM, Reyes SC, Microporous Mesoporous Mater., 104, 59 (2007)
- Krokidas P, Castier M, Economou IG, J. Phys. Chem. C, 121, 17999 (2017)
- Verploegh RJ, Nair S, Sholl DS, J. Am. Chem. Soc., 137(50), 15760 (2015)
- Lee MJ, Hamid MRA, Lee J, Kim JS, Lee YM, Jeong HK, J. Membr. Sci., 559, 28 (2018)
- Herm ZR, Bloch ED, Long JR, Chem. Mater., 26, 323 (2014)
- Yu J, Wang CQ, Xiang L, Xu YZ, Pan YC, Chem. Eng. Sci., 179, 1 (2018)
- Gucuyener C, van den Bergh J, Gascon J, Kapteijn F, J. Am. Chem. Soc., 132(50), 17704 (2010)
- Li B, Wang H, Chen B, Chem. Asian J., 9, 1474 (2014)
- Li B, Wen HM, Zhou W, Chen B, J. Phys. Chem. Lett., 5, 3468 (2014)
- Lee JH, Kwon HT, Bae S, Kim J, Kim JH, Sep. Purif. Technol., 207, 427 (2018)
- Grantom RL, Royer DJ, Ethylene, Ullmann's Encyclopedia of Industrial Chemistry, VCH, New York, 5th ed., 1987.
- Wang K, Stiefel EI, Science, 291, 106 (2001)
- Smith KA, Meldon JH, Colton CK, AIChE J., 19, 102 (1973)
- Ho WS, Dalrymple DC, J. Membr. Sci., 91(1-2), 13 (1994)
- Azhin M, Kaghazchi T, Rahmani M, J. Ind. Eng. Chem., 14(5), 622 (2008)
- Hong SU, Jin JH, Won J, Kang YS, Adv. Mater., 12(13), 968 (2000)
- Staudt-Bickel C, Koros WJ, J. Membr. Sci., 170(2), 205 (2000)
- Giannakopoulos IG, Nikolakis V, Ind. Eng. Chem. Res., 44, 226 (2004)
- Chng ML, Xiao Y, Chung TS, Toriida M, Tamai S, Carbon, 47, 1857 (2009)
- Li FY, Li Y, Chung TS, Kawi S, J. Membr. Sci., 356(1-2), 14 (2010)
- Qiao ZH, Wang Z, Zhang CX, Yuan SJ, Zhu YQ, Wang JX, Wang SC, AIChE J., 59(1), 215 (2013)
- Pinnau I, Toy LG, J. Membr. Sci., 184(1), 39 (2001)
- Pinnau I, Toy LG, Casillas C, US Patent 5,670,051 (23 Sep. 1997).
- Ryu JH, Lee H, Kim YJ, Kang YS, Kim HS, Chem. Eur. J., 7, 1525 (2001)
- Kang SW, Kim JH, Won J, Kang YS, J. Membr. Sci., 445, 156 (2013)
- Song D, Kang YS, Kang SW, J. Membr. Sci., 474, 273 (2015)
- Li Y, Hu Y, RSC Adv., 4, 51022 (2014)
- Nakajima K, Nagaoka S, Kawakami H, Polym. Adv. Technol., 14, 433 (2003)
- Halim A, Fu Q, Yong Q, Gurr PA, Kentish SE, Qiao GG, J. Mater. Chem. A, 2, 4999 (2014)