- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.31, No.2, 71-79, May, 2019
Peristaltic transport of thixotropic fluids: A numerical simulation
E-mail:
Peristaltic flow of a thixotropic fluid obeying the Moore model is numerically studied using the multiplerelaxation- time lattice Boltzmann method (MRT-LBM). Converged results could be obtained in a planar tw -dimensional channel at large Reynolds numbers for arbitrary wavelengths and amplitude ratios for nonzero Reynolds numbers. It is shown that depending on the Reynolds number and the parameters of the propagating wave, the time constant introduced through a fluid’s thixotropy may increase the mean flow rate of peristaltic pumps. Our numerical results suggest that for thixotropic fluids there exists a threshold wavenumber for the peristaltic wave above which thixotropy can boost fluid transport but below which it can have an opposite effect.
- Aitavade EN, Patil SD, Kadam AN, Mulla TS, IOSR J. Mech. Civil Eng. 19-24 2012.
- Akbar NS, Tripathi D, Khan ZH, Beg OA, Math. Biosci., 301, 121 (2018)
- Ceniceros HD, Fisher JE, J. Non-Newton. Fluid Mech., 171-172, 31 (2012)
- Chakradhar K, Sastry STVAP, Sreenadh S, Int. J. Innov. Technol. Creat. Eng., 2, 17 (2012)
- Chaube MK, Yadav A, Tripathi D, Beg OA, Korea-Aust. Rheol. J., 30(2), 89 (2018)
- Chaube MK, Yadav A, Dharmendra Y, J. Braz. Soc. Mech. Sci. Eng., 40, 423 (2018)
- Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30, 329 (1998)
- Derksen JJ, Prashant, J. Non-Newton. Fluid Mech., 160(2-3), 65 (2009)
- Eggels JGM, Somers JA, Int. J. Heat Fluid Flow, 16, 357 (1995)
- Hayat T, Wang Y, Hutter K, Asghar S, Siddiqui AM, Math. Probl. Eng., 2004, 347 (2004)
- Jaffrin MY, Shapiro AH, Annu. Rev. Fluid Mech., 3, 13 (1971)
- Khabazi NP, Taghavi SM, Sadeghy K, J. Non-Newton. Fluid Mech., 227, 30 (2016)
- Kumar BVR, Naidu KB, Comput. Fluids, 24, 161 (1995)
- Kung VE, Osmanlic F, Markl M, Korner C, Comput. Math. Appl. 2018.
- Lallemand P, Luo LS, Phys. Rev. E, 61, 6546 (2000)
- Mewis J, J. Non-Newton. Fluid Mech., 6, 1 (1997)
- Mezrhab A, Bouzidi M, Lallemand P, Comput. Fluids, 33, 623 (2004)
- Mohamad AA, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, 2011.
- Moore F, Trans. Brit. Ceram. Soc., 58, 470 (1959)
- Narla VK, Tripathi D, Beg OA, Kadir A, J. Eng. Math., 111, 127 (2018)
- Nezamidoost S, Sadeghy K, Nihon Reoroji Gakkaishi, 40, 1 (2012)
- Poursharifi Z, Asadi H, Sadeghy K, Korea-Aust. Rheol. J., 30(2), 75 (2018)
- Pozrikidis C, J. Fluid Mech., 180, 515 (1987)
- Prakash J, Tripathi D, J. Mol. Liq., 256, 352 (2018)
- Prakash J, Siva EP, Tripathi D, Kuharat S, Beg OA, Renew. Energy, 133, 1308 (2019)
- Ranjit NK, Shit GC, Tripathi D, Microvasc. Res., 117, 74 (2018)
- Rao AR, Mishra M, J. Non-Newton. Fluid Mech., 121(2-3), 163 (2004)
- Selverov KP, Stone HA, Phys. Fluids, 13, 1837 (2001)
- Takabatake S, Ayukawa K, J. Fluid Mech., 122, 439 (1982)
- Tiribocchi A, Stella N, Gonnella G, Lamura A, Phys. Rev. E, 80, 026701 (2009)
- Tripathi D, Sharma A, Beg OA, Adv. Powder Technol., 29(3), 639 (2018)
- Tripathi D, Yadav A, Beg OA, Kumar R, Microvasc. Res., 117, 28 (2018)
- Vajravelu K, Sreenadh S, Babu VR, Appl. Math. Comput., 169, 726 (2005)
- Yi M, Bau HH, Hu H, Phys. Fluids, 14, 184 (2002)
- Zhang R, Fan H, Chen H, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 369, 2264 (2011)