화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.31, No.2, 111-118, May, 2019
Rheological and electrical properties of polystyrene nanocomposites via incorporation of polymer-wrapped carbon nanotubes
E-mail:
Carbon nanotubes (CNTs) are used as nanofillers in polymer nanocomposites to improve the properties of a matrix polymer because of their excellent properties. However, CNTs tend to aggregate due to the strong van der Waals force between CNTs. To solve the problem, surface-modified CNTs with hydrophilic polymers, such as polyvinyl pyrrolidone (PVP) and polystyrene sulfonate (PSS), were employed. Polystyrene (PS)/CNT nanocomposites were fabricated by latex technology, which is a suitable method for dispersing nanofillers in aqueous particle suspension. The effect of the incorporation of the modified CNT was significant, thereby resulting in increased modulus at lower frequencies when compared to that of neat PS. Electrical percolation thresholds of PS/PSS-wrapped CNT and PS/PVP-wrapped CNT nanocomposites corresponded to 0.39 and 0.52 wt.%, respectively. The PS/PSS-CNT nanocomposites exhibited higher rheological and electrical properties than the PS/PVP-CNT counterparts due to the hydrophilic nature of PSS with strong negative charge groups.
  1. Akram Z, Kausar A, Siddiq M, Polym. -Plast. Technol. Eng., 55, 582 (2016)
  2. Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH, Mater. Des., 95, 1 (2016)
  3. Choudhary V, Gupta A, Carbon Nanotubes-Polymer Nanocomposites, 65 2011.
  4. Coleman JN, Dalton AB, Curran S, Rubio A, Davey AP, Drury A, McCarthy B, Lahr B, Ajayan PM, Roth S, Barklie RC, Blau WJ, Adv. Mater., 12(3), 213 (2000)
  5. Coleman JN, Khan U, Blau WJ, Gun’ko YK, Carbon, 44, 1624 (2006)
  6. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)
  7. Gong K, Yu P, Su L, Xiong S, Mao L, J. Phys. Chem. C, 111, 1882 (2007)
  8. Grossiord N, Wouters MEL, Miltner HE, Lu K, Loos J, Mele BV, Koning CE, Eur. Polym. J., 46, 1833 (2010)
  9. Hong K, Nam S, Yang C, Kim SH, Chung DS, Yun WM, Park CE, Org. Electron., 10, 363 (2009)
  10. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)
  11. Jung R, Park WI, Kwon SM, Kim HS, Jin HJ, Polymer, 49(8), 2071 (2008)
  12. Jung YC, Yoo HJ, Kim YA, Cho JW, Endo M, Carbon, 48, 1598 (2010)
  13. Kader MA, Kim K, Lee YS, Nah C, J. Mater. Sci., 41(22), 7341 (2006)
  14. Kang MH, Noh WJ, Woo DK, Lee SJ, Polym. Korea, 36(3), 364 (2012)
  15. Ma PC, Siddiqui NA, Marom G, Kim JK, Compos. Pt. A-Appl. Sci. Manuf., 41, 1345 (2010)
  16. Martins JN, Bassani TS, Barra GMO, Oliveira RVB, Polym. Int., 60, 430 (2011)
  17. Miao J, Miyauchi M, Dordick JS, Linhardt RJ, J. Nanosci. Nanotechnol., 12, 2387 (2012)
  18. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR, J. Ind. Eng. Chem., 21, 11 (2015)
  19. Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
  20. Nasiri A, Shariaty-Niasar M, Rashidi A, Amrollahi A, Khodafarin R, Exp. Therm. Fluid Sci., 35, 717 (2011)
  21. Ntim SA, Sae-Khow O, Witzmann FA, Mitra S, J. Colloid Interface Sci., 355(2), 383 (2011)
  22. O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE, Chem. Phys. Lett., 342(3-4), 265 (2001)
  23. Paine AJ, Luymes W, McNulty J, Macromolecules, 23, 3104 (1990)
  24. Punetha VD, Rana S, Yoo HJ, Chaurasia A, McLeskey JT, Ramasamy MS, Sahoo NG, Cho JW, Prog. Polym. Sci, 67, 1 (2017)
  25. Reese CE, Guerrero CD, Weissman JM, Lee K, Asher SA, J. Colloid Interface Sci., 232(1), 76 (2000)
  26. Safadi B, Andrews R, Grulke EA, J. Appl. Polym. Sci., 84(14), 2660 (2002)
  27. Sahoo NG, Rana S, Cho JW, Li L, Chan SH, Prog. Polym. Sci, 35, 837 (2010)
  28. Sureshkumar M, Na HY, Ahn KH, Lee SJ, ACS Appl. Mater. Interfaces, 7, 756 (2015)
  29. Woo DK, Kim BC, Lee SJ, Korea-Aust. Rheol. J., 21(3), 185 (2009)
  30. Zhang ZJ, Zhang J, Chen P, Zhang B, He J, Hu GH, Carbon, 44, 692 (2006)
  31. Zhang ZY, Xu XC, Chem. Eng. J., 256, 85 (2014)