Korean Journal of Chemical Engineering, Vol.36, No.6, 903-908, June, 2019
Engineering Trichosporon oleaginosus for enhanced production of lipid from volatile fatty acids as carbon source
E-mail:
Trichosporon oleaginosus is one of the most promising hosts for microbial lipid production owing to its high-productivity. In an effort to develop an economical production process, we engineered T. oleaginosus towards high-lipid production from volatile fatty acids (VFA) derived from anaerobic fermentation of food waste. First, we established a method for labeling intracellular lipid with lipophilic BODIPY fluorescent dye. Next, a random library was constructed by treatment with a chemical mutagen, and high-lipid producers were screened using fluorescenceactivated cell sorting. Subsequently, one clone, N14, was successfully isolated, which exhibited 3-fold higher lipid production (19.4%) in VFA (6 g/L) media than the wild-type strain, and also showed increased lipid production in higher concentrations of VFA (18 or 24 g/L). Based on fatty acid methyl ester (FAME) analysis, N14 contained higher stearic acid (C18:0) and oleic acid (C18:1) content compared with those of the wild-type strain.
Keywords:Trichosporon oleaginosus;Volatile Fatty Acids;Fluorescence-activated Cell Sorting;Microbial Lipid;BODIPY
- Gujjari P, Suh SO, Coumes K, Zhou JJ, Mycologia, 103, 1110 (2011)
- Yaguchi A, Rives D, Blenner M, AIMS Microbiol., 3, 227 (2017)
- Meo A, Priebe XL, Weuster-Botz D, J. Biotechnol., 241, 1 (2017)
- Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW, Bioresour. Technol., 135, 357 (2013)
- Chi ZY, Zheng YB, Ma JW, Chen SL, Int. J. Hydrog. Energy, 36(16), 9542 (2011)
- Xu X, Kim JY, Cho HU, Park HR, Park JM, Chem. Eng. J., 264, 735 (2014)
- Gong Z, Shen H, Zhou W, Wang Y, Yang X, Zhao ZK, Biotechnol. Biofuels, 8, 189 (2015)
- Kim MS, Li D, Choi OK, Sang BI, Chiang PC, Kim HO, Korean J. Chem. Eng., 34(10), 2678 (2017)
- Lim SJ, Choi DW, Lee WG, Kwon S, Chang HN, Bioprocess Eng., 22, 543 (2000)
- Kidanu WG, Trang PT, Yoon HH, Biotechnol. Bioprocess Eng., 22, 612 (2017)
- Li D, Kim MS, Kim HJ, Choi OK, Sang BI, Chiang PC, Kim HO, Korean J. Chem. Eng., 35(1), 179 (2018)
- Park GW, Fei Q, Jung K, Chang HN, Kim YC, Kim NJ, Choi JD, Kim S, Cho J, Biotechnol. J., 9, 1536 (2014)
- Fei Q, Chang HN, Shang LA, Choi JDR, Kim N, Kang J, Bioresour. Technol., 102(3), 2695 (2011)
- Close D, Ojumu J, Genome Announc., 4, e01235 (2016)
- Kourist R, Bracharz F, Lorenzen J, Kracht ON, Chovatia M, et al., mBio, 6, e00918 (2015)
- Gorner C, Redai V, Bracharz F, Schrepfer P, Garbe D, Bruck T, Green Chem., 18, 2037 (2016)
- Yim SS, Bang HB, Kim YH, Lee YJ, Jeong GM, Jeong KJ, PLOS One, 9, e10822 (2014)
- Choi SL, Rha E, Lee SJ, Kim H, Kwon K, Jeong YS, Rhee YH, Song JJ, Kim HS, Lee SG, ACS Synth. Biol., 3, 163 (2014)
- Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ, Bioresour. Technol., 138, 30 (2013)
- Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ, Biotechnol. Biofuels, 7, 117 (2014)
- Yim SS, Choi JW, Lee SH, Jeong KJ, ACS Synth. Biol., 5, 334 (2014)
- Hollinshead WD, Varman AM, You L, Hembree Z, Tang YJJ, Bioresour. Technol., 169, 462 (2014)
- Liu J, Yuan M, Liu JN, Huang XF, Bioresour. Technol., 241, 645 (2017)
- Chalima A, Oliver L, de Castro LF, Karnaouri A, Dietrich T, Topakas E, Fermentation, 3, 54 (2017)
- Kameda E, Martins FF, Amaral PFF, Valoni EA, Coelho MAZ, Chem. Eng. Trans., 38, 529 (2014)
- Stansell GR, Gray VM, Sym SD, J. Appl. Phycol., 24, 791 (2012)
- Kinney AJ, Clemente TE, Fuel Process. Technol., 86(10), 1137 (2005)
- Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M, Renew. Sust. Energ. Rev., 16, 143 (2012)