화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.6, 914-928, June, 2019
Enhancing natural gas dehydration performance using electrospun nanofibrous sol-gel coated mixed matrix membranes
E-mail:
The dehydration process of natural gas was investigated by mixed matrix membranes (MMM), which were fabricated by electrospinning and sol-gel coating methods. Silica and titania nanoparticles (NPs) were incorporated into the polymer matrix via sol-gel method. The fabricated MMMs were characterized by field emission electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Dehydration tests were carried out for wet pure methane and natural gas streams individually. The effects of different process parameters, including feed and sweep gas flow rates, moisture content in the feed, feed pressure and other hydrocarbons in the feed were investigated. The prepared electrospun nanofibrous supports (ESNS) have smaller fiber diameters in comparison to previously reported works, and with regard to the commercially available materials, contribute to higher water vapor permeation. The results showed that by increasing the feed pressure from 2.5 to 15 bar for the membranes without NPs, the permeance of methane and water vapor was decreased by 8.2 and 29%, respectively. It was also observed that the permeance of heavier hydrocarbons in Pebax 1657 membrane is higher than methane, leading to the increase of H2O/CH4 selectivity and the loss of heavier hydrocarbons. Finally, determining the resistances of the support and selective layers based on the existing empirical relations demonstrated that the total resistance to water vapor transmission had decreased by 75.2% using ESNS instead of microporous supports (MPS). In addition, the contribution of support layer resistances was decreased from 67% in MPS membranes to less than 30% in ESNS ones.
  1. Sakheta A, Zahid U, Chem. Eng. Res. Des., 137, 70 (2018)
  2. Kong ZY, Mahmoud A, Liu S, Sunarso J, J. Nat. Gas Sci. Eng., 56, 486 (2018)
  3. Neagu M, Cursaru DL, J. Nat. Gas Sci. Eng., 37, 327 (2017)
  4. Santos MGRS, Correia LMS, de Medeiros JL, Araujo ODF, Cheric, 149, 760 (2017)
  5. Shooshtari SHR, Shahsavand A, Appl. Therm. Eng., 139, 76 (2018)
  6. Dalane K, Svendsen HF, Hillestad M, Deng LY, J. Membr. Sci., 556, 263 (2018)
  7. Scholes CA, Stevens GW, Kentish SE, Fuel, 96(1), 15 (2012)
  8. Baker RW, Vapor and Gas Separation by Membranes, in: Adv. Membr. Technol. Appl., Wiley, New York (2008).
  9. Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE, Adv. Mater., 16(1), 58 (2004)
  10. Ge JJ, Hou HQ, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD, J. Am. Chem. Soc., 126(48), 15754 (2004)
  11. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA, Langmuir, 30(51), 15504 (2014)
  12. Ji L, Zhang X, Mater. Lett., 62, 2165 (2008)
  13. Jung HR, Ju DH, Lee WJ, Zhang XW, Kotek R, Electrochim. Acta, 54(13), 3630 (2009)
  14. Yang JP, Chen ZK, Yang G, Fu SY, Ye L, Polymer, 49(13-14), 3168 (2008)
  15. Von Wroblewski S, Ann. Phys. u Chem., 8, 29 (1879)
  16. Srivastava V, Gusain D, Sharma YC, Ceram. Int., 39, 9803 (2013)
  17. Wu CL, Zhang MQ, Rong MZ, Friedrich K, Compos. Sci. Technol., 65, 635 (2005)
  18. Chiang CL, Chang RC, Chiu YC, Thermochim. Acta, 453(2), 97 (2007)
  19. Setoodeh N, Darvishi P, Lashanizadegan A, J. Dispersion Sci. Technol., 39, 711 (2017)
  20. Setoodeh N, Darvishi P, Lashanizadegan A, J. Dispersion Sci. Technol., 39, 452 (2017)
  21. Potreck J, Nijmeijer K, Kosinski T, Wessling M, J. Membr. Sci., 338(1-2), 11 (2009)
  22. Barrie JA, Haegg MB, Membranes in gas separation, in: 4th BOC Priest. Conf., 89 (1986).
  23. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(3), 415 (2000)
  24. Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, London (1996).
  25. Barbi V, Funari SS, Gehrke R, Scharnagl N, Stribeck N, Macromolecules, 36(3), 749 (2003)
  26. Metz SJ, Mulder MHV, Wessling M, Film, 37, 4590 (2004)
  27. Watari T, Wang HY, Kuwahara K, Tanaka K, Kita H, Okamoto K, J. Membr. Sci., 219(1-2), 137 (2003)
  28. Chiou JS, Paul DR, Ind. Eng. Chem. Res., 27, 2161 (1988)
  29. Chen G, Zhang XS, Wang JH, Zhang SB, J. Appl. Polym. Sci., 106(5), 3179 (2007)
  30. Lin H, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, Merkel TC, J. Membr. Sci., 413-414, 70 (2012)
  31. Akhtar FH, Kumar M, Peinemann KV, J. Membr. Sci., 525, 187 (2016)
  32. Ko FK, Wan Y, Introduction to nanofiber materials, Cambridge University Press, New York (2014).
  33. Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B, Environ. Sci. Technol., 39, 7684 (2005)
  34. Yoon K, Kim K, Wang XF, Fang DF, Hsiao BS, Chu B, Polymer, 47(7), 2434 (2006)
  35. Gibson DRP, Schreuder-Gibson HL, Gibson P, Schreuder-Gibson H, Rivin D, Colloids Surf. A: Physicochem. Eng. Asp., 188, 469 (2001)
  36. Grafe T, Graham K, Int. Nanwovens Tech. Conf., 24 (2002).
  37. Barhate RS, Ramakrishna S, J. Membr. Sci., 296(1-2), 1 (2007)
  38. Huizing R, Merida W, Ko F, J. Membr. Sci., 461, 146 (2014)
  39. Poormohammadian SJ, Darvishi P, Dezfuli AMG, Chin. J. Chem. Eng., 27, 100 (2018)
  40. Metz SJ, van de Ven WJC, Potreck J, Mulder MHV, Wessling M, J. Membr. Sci., 251(1-2), 29 (2005)
  41. Metz SJ, van de Ven WJC, Mulder MHV, Wessling M, J. Membr. Sci., 266(1-2), 51 (2005)
  42. Satterfield MB, Benziger JB, J. Phys. Chem. B, 112(12), 3693 (2008)
  43. Ji L, Saquing C, Khan SA, Zhang X, Nanotechnology, 19, 85605 (2008)
  44. Wang MJ, Wolff S, Donnet JB, Rubber Chem. Technol., 64, 714 (1991)
  45. Sawicka KM, Gouma P, J. Nanoparticle Res., 8, 769 (2006)
  46. Gao J, Gao T, Sailor MJ, Appl. Phys. Lett., 77, 901 (2000)
  47. Nagel H, Hezel R, Sol. Energy Mater. Sol. Cells, 65, 71 (2001)
  48. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM, Nat. Mater., 6(4), 278 (2007)
  49. Roy P, Kim D, Lee K, Spiecker E, Schmuki P, Nanoscale, 2, 45 (2010)
  50. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  51. Fujishima A, Honda K, Nature, 238, 37 (1972)
  52. Wang X, Fujimaki M, Awazu K, Opt. Express., 13, 1486 (2005)
  53. Kim HM, Miyaji F, Kokubo T, Nakamura T, J. Biomed. Mater. Res., 32, 409 (1996)
  54. Alvarez D, Novoa XR, Perez C, Prog. Org. Coat., 96, 3 (2015)
  55. Wang D, Bierwagen G, Prog. Org. Coat., 64, 327 (2009)
  56. Lin HQ, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, Low BT, Merkel TC, J. Membr. Sci., 432, 106 (2013)
  57. Ingole PG, Baig MI, Choi WK, Lee HK, J. Mater. Chem. A, 4, 5592 (2016)
  58. Xing R, Rao YX, TeGrotenhuis W, Canfield N, Zheng F, Winiarski DW, Liu W, Chem. Eng. Sci., 104, 596 (2013)
  59. Baumgarten PK, J. Colloid Interface Sci., 36, 71 (1971)
  60. Doshi J, Reneker DH, Sect. Title Text. Fibers, 35, 151 (1995)
  61. Fong H, Chun I, Reneker DH, Polymer, 40(16), 4585 (1999)
  62. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
  63. Demir MM, Yilgor I, Yilgor E, Erman B, Polymer, 43(11), 3303 (2002)
  64. Van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ, Nat. Commun., 6, 6229 (2015)
  65. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
  66. Sakka S, SoleGel Process and Applications, in: Handb. Adv. Ceram. Mater. Appl. Process. Prop., 883 (2013).
  67. Baker RW, Membrane Technology and Applications, Wiley, New York (2004).
  68. Shen Y, Lua AC, Chem. Eng. J., 188, 199 (2012)
  69. Bondi A, J. Phys. Chem., 68, 441 (1964)
  70. Zhao YH, Abraham MH, Zissimos AM, J. Org. Chem., 68, 7368 (2003)
  71. Jomekian A, Behbahani RM, Mohammadi T, Kargari A, Korean J. Chem. Eng., 34(2), 440 (2017)
  72. Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 37(17), 2463 (1999)
  73. Kim JH, Lee YM, J. Membr. Sci., 193(2), 209 (2001)
  74. Khosravi A, Sadeghi M, Banadkohi HZ, Talakesh MM, Ind. Eng. Chem. Res., 53(5), 2011 (2014)
  75. Ma CG, Rong MZ, Zhang MQ, Friedrich K, Polym. Eng. Sci., 45(4), 529 (2005)
  76. Choudalakis G, Gotsis AD, Curr. Opin. Colloid Interface Sci., 17, 132 (2012)
  77. Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(15), 2051 (2000)
  78. Wang KL, Mccrayb SH, Newboldb DD, Cussler EL, J. Membr. Sci., 72, 231 (1992)
  79. Baker RW, Membrane Technology and Applications, Wiley, New York (2012).
  80. Merkel TC, Bondar V, Nagai K, Freeman BD, J. Polym. Sci. B: Polym. Phys., 38(2), 273 (2000)
  81. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61 (1999)
  82. Massman WJ, Atmos. Environ., 32, 1111 (1998)
  83. Chen GQ, Scholes CA, Qiao GG, Kentish SE, J. Membr. Sci., 379(1-2), 479 (2011)
  84. Yave W, Shishatskiy S, Abetz V, Matson S, Litvinova E, Khotimskiy V, Peinemann KV, Macromol. Chem. Phys., 208, 2412 (2007)
  85. Wahab MSA, Sunarti AR, Membr. Sci. Technol., 2, 78 (2015)
  86. Jay MS, Tripodi MK, J. Membr. Sci., 8, 233 (1981)
  87. Wijmans JG, Athayde AL, Daniels R, Ly JH, Kamaruddin HD, Pinnau I, J. Membr. Sci., 109(1), 135 (1996)
  88. Kneifel K, Nowak S, Albrecht W, Hilke R, Just R, Peinemann KV, J. Membr. Sci., 276(1-2), 241 (2006)
  89. Basafa M, Chenar MP, Sep. Sci. Technol., 49(16), 2465 (2014)
  90. Dalton PD, Klee D, Moller M, Polymer, 46(3), 611 (2005)
  91. Khajavi R, Abbasipour M, Sci. Iran., 19, 2029 (2012)