Advanced Powder Technology, Vol.30, No.5, 1018-1024, 2019
Nanometric WC-12 wt% AISI 304 powders obtained by high energy ball milling
WC cemented carbides with a greener alternative binder to Co, AISI 304 stainless steel (SS), were processed through high energy ball milling (HEBM). The milling parameters, such as rotation speed, ball-to-powder ratio and milling time were investigated. Selected milling conditions were applied to obtain a nanosized powder of WC-12 wt% SS with a highly uniform distribution of the ductile phase. For comparison, a conventionally wet milled powder was also prepared. Both powders were thermally characterized by dilatometry, up to 1450 degrees C, using vacuum atmosphere, and structural and microstructural analysis were performed in the sintered samples. The nanometric size of the HEBM powder particles markedly affected its densification and thermal reactivity; when compared with the micrometric powder obtained from conventional milling, early starting densification, with a greater contribution of solid state sintering, and increased reactivity, with formation of a larger amount of (M,W)(6)C phase, was noticed during sintering of HEBM powder compacts. (C) 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.