Advanced Powder Technology, Vol.30, No.4, 681-690, 2019
The roles of magnesium in the mineral metabolism of biological apatite for the treatment of arthritis inspired by the deer antler
Nowadays, the treatment of osteoarthritis (OA), a highly prevalent joint disorder, remains a medical challenge because of the lack of understanding of its pathogenesis. In this work, we developed an alternative strategy of OA treatment using magnesium-based materials as potential therapeutic agent towards subchondral bone remodeling. We selected deer antlers as the animal model where calcification behaviors could provide interesting references for the rapid and reproducible endochondral bone growth. Extremely high content of Mg was detected in the antler, which was able to affect the evolutions of biological apatite. Herein, octacalcium phosphate (OCP) and amorphous calcium phosphate (ACP), which are critically involved in the calcification process, were respectively synthesized under the Mg-containing conditions to understand the role of Mg in the evolution of biological apatite. Results showed that the substitution of Mg2+ at lower contents stabilized OCP and ACP, while higher contents of Mg inhibited the formation of both phases. The size of both calcium phosphates was also altered significantly by the addition of Mg. The results of cell culture indicated that excess Mg notably accelerated the secretion of extracellular matrix and inhibited the mineralization of chondrocyte matrix. Hence, utilization of Mg based materials in subchondral bone was supposed to provide a potential therapeutic approach to treat the OA by inhibiting subchondral of ossification process. (C) 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.