화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.248, 380-387, 2019
Copper-mediated metal-organic framework as efficient photocatalyst for the partial oxidation of aromatic alcohols under visible-light irradiation: Synergism of plasmonic effect and schottky junction
Metal-organic framework (MOF) is one of the most promising porous materials in photocatalysis. In this study, copper was deposited on as well as encapsulated in a semiconductor-like MOF (UiO-66) to fabricate the Cu/Cu@ UiO-66 catalyst via an advanced double-solvent approach followed by one-step reduction. Even with ultralow amount of copper, Cu/Cu@UiO-66 shows significantly enhanced photocatalytic activity as well as stability for partial oxidation of aromatic alcohols under visible light irradiation. The result is attributed to the integration of plasmonic effect (Cu nanoparticles on UiO-66) and Schottky junction (Cu quantum dots encapsulated in UiO-66) which can be considered as a promising noble-metal-free way for the enhancement of visible-light-driven photocatalytic activity of MOFs.