화학공학소재연구정보센터
Bioresource Technology, Vol.284, 373-380, 2019
Efficient resource valorization by co-digestion of food and vegetable waste using three stage integrated bioprocess
During two-stage (Acidogenesis-Methanogenesis) process, solid organics and gaseous by-products are usually left unused. To increase resource recovery efficiency, a three stage process (Hydrolysis/Acidogenesis-Methanogenesis-Composting) was designed. Initially, co-digestion of food waste (FW) and vegetable waste (VW) was carried out in Leach Bed Reactor (LBR) for hydrolysis and acidogenesis, followed by airlift reactor (ALR) for methanogenesis for 21 days using two different feed stocks [2:3 FW:VW similar to FVW; FW alone]. Off gas from LBR was diverted to ALR to enhance methane recovery. Results depicted that volatile fatty acids (VFA) and biohydrogen production was more for FW fed system, while methane production was higher in FVW fed system. Three different functional zones in three separate chambers significantly accelerated organic removal rate while gas diversion increased overall methane recovery. In third stage, residual solid organic matter from LBR was subjected to aerobic composting and compost with N (%): 2.90 & 2.76; C/N ratio: 18.2 & 20.8 for FVW and FW was recovered. The three-stage process has advantages of zero waste generation and overall process stability, accounting for resource efficient circular loop.