화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.5, 282-287, May, 2019
Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size
E-mail:
The photovoltaic properties of TiO2 used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm TiO2 as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each TiO2 layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the TiO2 shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of TiO2 and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm TiO2 demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of TiO2. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the TiO2 particle size, which is explained by a one-dimensional model of the electron path through various TiO2 particles.
  1. Zhao Y, Nardes AM, Zhu K, Faraday Discuss., 176, 301 (2014)
  2. Liu T, Chen K, Hu Q, Zhu R, Gong Q, Adv. Eng. Mater., 6, 160045 (2016)
  3. Gratzel M, Nat. Mater., 13(9), 838 (2014)
  4. Sanehira EM, Villers BJTD, Schulz P, Reese MO, Ferrere S, Zhu K, Lin LY, Berry JJ, Luther JM, ACS Energy Lett., 1, 38 (2016)
  5. Koo B, Jung H, Park M, Kim JY, Son HJ, Cho J, Ko MJ, Adv. Funct. Mater., 26(30), 5400 (2016)
  6. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI, Nano Lett., 13, 1764 (2013)
  7. Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI, Science, 356(6345), 1376 (2017)
  8. Huang Y, Zhu J, Ding Y, Chen S, Zhang C, Dai S, ACS Appl. Mater. Interfaces, 8162 (2016)
  9. Kojima A, Teshima K, Shirai Y, Miyasaka T, J. Am. Chem. Soc., 131(17), 6050 (2009)
  10. Wakamiya A, Endo M, Sasamori T, Tokitoh N, Ogomi Y, Hayase S, Murata Y, Chem. Lett., 43(5), 711 (2014)
  11. Sidhik S, Esparza D, Benitez AM, Luke TL, Carriles R, Sero IM, Rosa ED, J. Phys. Chem. C, 121, 4239 (2017)
  12. Yang Y, Ri K, Mei A, Liu L, Hu M, Liu T, Li X, Han H, J. Mater. Chem. A, 3, 9103 (2015)
  13. Kim K, Park T, Song O, Korean J. Met. Mater., 56, 321 (2018)
  14. Frey A, Engelhardt J, Micard G, Hahn G, Terheiden B, Phys. Status Solidi RRL, 10, 143 (2016)