화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.5, 297-303, May, 2019
Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film
E-mail:
A triple-layered PMMA/Ni64Zr36/PDMS hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the Ni64Zr36 alloy layer to give a high hydrogenselectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the Pd77Ag23 sensor. Despite using low cost Ni64Zr36 alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.
  1. Yamaura SI, Shimpo Y, Okouchi H, Nishida M, Kajita O, Mater. Trans., 44, 1885 (2000)
  2. Ruth LA, Mater. High Temp., 20, 7 (2003)
  3. Newsome DS, Catal. Rev., 21, 275 (1980)
  4. Nam SE, Lee SH, Lee KH, J. Membr. Sci., 153(2), 163 (1999)
  5. Li J, Fan R, Hu H, Yao C, Mater. Lett., 212, 211 (2018)
  6. Watkins WL, Borensztein Y, Sens. Actuators B-Chem., 273, 527 (2018)
  7. McCool BA, Lin YS, J. Mater. Sci., 36(13), 3221 (2001)
  8. Hughes RC, Schubert WK, J. Appl. Phys., 71, 542 (1992)
  9. Brown CC, Buxbaum RE, Metall. Trans. A, 19, 1425 (1988)
  10. Kim SM, Chandra D, Pal NK, Dolan MD, Chien WM, Talekar A, Lamb J, Paglieri SN, Flanagan TB, Int. J. Hydrog. Energy, 37(4), 3904 (2012)
  11. Hara S, Hatakeyama N, Itoh N, Kimura HM, Inoue A, J. Membr. Sci., 211(1), 149 (2003)
  12. Hara S, Sakaki K, Itoh N, Kimura HM, Asami K, Inoue A, J. Membr. Sci., 164(1-2), 289 (2000)
  13. Hara S, Hatakeyama N, Itoh N, Kimura HM, Inoue A, Desalination, 144(1-3), 115 (2002)
  14. Yamaura SI, Shimpo Y, Okouchi H, Nishida M, Kajita O, Kimura H, Inoue A, Mater. Trans., 44, 1885 (2003)
  15. Holleck GL, J. Phys. Chem., 74, 503 (1970)
  16. Katsuta H, Farraro RJ, McLellan RB, Acta Metall., 27, 1111 (1979)
  17. Dolan MD, Hara S, Dave NC, Haraya K, Ishitsuka M, Ilyushechkin AY, Kita K, McLennan KG, Morpeth LD, Mukaida M, Sep. Purif. Technol., 65(3), 298 (2009)
  18. Yamaura SI, Sakurai M, Hasegawa M, Wakoh K, Simpo Y, Nishida M, Kimura H, Matsubara E, Inoue A, Acta Mater., 53, 3703 (2005)
  19. Lu C, Chen Z, Sens. Actuators B-Chem., 140, 109 (2009)
  20. Lee J, Kim DH, Hong SH, Jho JY, Sens. Actuators B-Chem., 160, 1494 (2011)
  21. Sennik E, Colak Z, Kilinc N, Ozturk ZZ, Int. J. Hydrog. Energy, 35(9), 4420 (2010)
  22. Katsuta H, Farraro RJ, McLellan RB, Acta Metall., 27, 1111 (1979)
  23. Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, Song S, J. Membr. Sci., 326(2), 549 (2009)
  24. Balla S, Vehovszky B, Bardos A, Kovalakova M, J. Phys. Condens. Matter, 144, 012012 (2009)