Korean Journal of Materials Research, Vol.29, No.5, 311-316, May, 2019
구리 전기도금 방법을 이용한 은 나노와이어 투명전극의 전기전도도 향상
Enhancement of Electrical Conductivity in Silver Nanowire Network for Transparent Conducting Electrode using Copper Electrodeposition
E-mail:,
Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from 21.9 Ω/□ to 12.6 Ω/□. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.
- Gordon RG, MRS Bull., 25, 52 (2000)
- Minami T, Semicond. Sci. Technol., 20, S35 (2005)
- Minami T, Thin Solid Films, 516(17), 5822 (2008)
- Kumar A, Zhou C, ACS Nano, 4, 11 (2010)
- Tung BC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y, Nano Lett., 9, 1949 (2009)
- Lee S, Lee JS, Jang J, Hong KH, Lee DK, Song S, Kim K, Eo YJ, Gwak J, Chung CH, Nano Energy, 53, 675 (2018)
- Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P, ACS Nano, 4, 43 (2010)
- Pang SP, Hernandez Y, Feng XL, Mullen K, Adv. Mater., 23(25), 2779 (2011)
- Lee S, Jang J, Cho KS, Oh YJ, Hong KH, Song S, Kim K, Eo YJ, Yun JH, Gwak J, Chung CH, Sol. Energy, 180, 519 (2019)
- Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo LJ, Li WD, Small, 12, 3021 (2016)
- Azulai D, Belenkova T, Gilon H, Barkay Z, Markovich G, Nano Lett., 9, 4246 (2009)
- Yu ZB, Zhang QW, Li L, Chen Q, Niu XF, Liu J, Pei QB, Adv. Mater., 23(5), 664 (2011)
- Jang J, Park DY, Hong KH, Song S, Kim K, Eo YJ, Gwak J, Yun JH, Chung CH, Nanosci. Nanotechnol. Lett., 10, 528 (2018)
- Chen CC, Dou L, Zhu R, Chung CH, Song TB, Zheng YB, Hawks S, Li G, Weiss PS, Yang Y, ACS Nano, 6, 7185 (2012)
- Langley D, Giuti G, Mayousse C, Celle C, Bellet D, Simonato JP, Nanotechnology, 24, 452001 (2013)
- Jang J, Lee JS, Hong KH, Lee DK, Song S, Kim K, Eo YJ, Yun JH, Chung CH, Sol. Energy Mater. Sol. Cells, 170, 60 (2017)
- Eom HJ, Lee JM, Aekachan P, Morteza A, Jeong JH, Lee ES, Lee JY, Park IK, Small, 20, 4171 (2014)
- Lin SC, Chen SY, Chen YT, Cheng SY, J. Alloy. Compd., 449, 232 (2008)
- Yuksel R, Coskun S, Kalay YE, Unalan HE, J. Power Sources, 328, 167 (2016)
- Bellet D, Lagrange M, Sannicolo T, Aghazadehchors S, et al., Materials, 10, 570 (2017)
- Cullity BD, Stock SR, Elements of X-ray diffraction, 3rd ed, p.158, Prentice-Hall, Englewood Cliffs, NJ (2001).
- Bid A, Bora A, Raychaudhuri AK, Phys. Rev. B, 74, 035426 (2006)