- Previous Article
- Next Article
- Table of Contents
Korean Chemical Engineering Research, Vol.57, No.3, 305-312, June, 2019
나노 구조체를 이용한 산화질소 전달체에 대한 연구 및 바이오메디컬 응용
Nitric Oxide Delivery using Nanostructures and Its Biomedical Applications
E-mail:
초록
산화질소(NO)가 혈관 확장, 혈소판 응집 억제, 면역 반응 조절, 상처 치료, 항암 등의 주요 병리 생리학적 프로세스에 관여한다는 사실이 밝혀지면서 최근 산화질소 전달에 대한 국내외 연구진들의 관심이 높아지고 있다. 그러나 인체에 이상적으로 적용될 수 있는 산화질소 전달체의 개발은 산화질소의 높은 반응성과 짧은 반감기로 인하여 여전히 난제로 남아 있다. 본 논문에서는 다양한 산화질소 전달체 중에서도 최근 바이오메디컬 분야에서 연구가 활발히 이루어지고 있는 나노 구조체를 이용한 전달체의 연구 결과 및 응용 방향에 대해서 소개하고자 한다. 나노 크기의 구조체가 다른 전달체와 비교하여 가지는 장점은 표면 대 부피 비율이 높아 산화질소를 효율적으로 탑재할 수 있고, 표면 개조 능력이 뛰어나 산화질소의 방출 양상을 효과적으로 제어할 수 있다는 것이다. 특히 이 글에서는 다양한 나노 구조체중에서도 나노입자 형태, 마이크로에멀젼 형태, 그리고 다층필름 형태의 나노 구조체에 대해서 다룸으로써 각 구조체의 산화질소 방출 양상을 비교하고 그 특징에 대해서 자세히 알아보고자 한다. 이와 같은 나노 구조체의 개발은 산화질소의 급격한 방출을 방지하고 지효성을 띠게 함으로써 타겟 부위에서의 효과를 높일 수 있을 것으로 기대되며, 더 나아가 차후 다양한 바이오메디컬 분야에서 유망한 치료 기제로서 적용될 수 있을 것으로 보인다.
The discovery of nitric oxide (NO) as a major signaling molecule in a number of pathophysiological processes . vasodilation, immune response, platelet aggregation, wound repair, and cancer biology - has led to the development of various exogeneous NO delivery systems. However, the development of ideal delivery system for human body application is still left as a challenge due to its high reactivity and short half-life in physiological condition. In this article, an overview of several nano-structures as potential NO delivery system will be presented, along with their recent research results and biomedical applications. Nano-size delivery system has immense advantages compared to others due to its high surface-to-volume ratio and capability for surface modification; thus, it has been proven to be effective in delivering nitric oxide with enhanced performance. Through this novel nano-structure delivery system, we are expecting to achieve sustained release of nitric oxide within adequate range of concentration, which ensures desired drug effects at the target site. Among different nano-structures, in particular, nanoparticle, microemulsion and nanofilm will be reviewed and compared to each other in respect of nitric oxide release profile. The proposed nano-structures for exogeneous NO delivery have a biological significance in that it can be further utilized in diverse biomedical fields as a highly promising therapeutic method.
- Walford G, Loscalzo J, Journal of Thrombosis Haemostasis, 1(10), 2112 (2003).
- Fang FC, The Journal of Clinical Investigation, 99(12), 2818(1997).
- Luo JD, Chen AF, Acta Pharmacol. Sin., 26(3), 259 (2005)
- Mocellin S, Bronte V, Nitti D, Medicinal Research Reviews, 27(3), 317 (2007)
- Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ, Journal of the American College of Cardiology, 62(2), 89 (2013).
- Hetrick EK, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH, ACS Nano, 2(2), 235 (2008)
- Suchyta DJ, Schoenfisch MH, ACS Biomaterials Science & Engineering, 3(9), 2136 (2017)
- Reighard KP, Ehre C, Rushton ZL, Ahonen MJR, Hill DB, Schoenfisch MH, ACS Biomaterials Science & Engineering, 3(6), 1017 (2017)
- Hrabie JA, Keefer LK, Chem. Rev., 102(4), 1135 (2002)
- Friedman AJ, Han G, Navati MS, Chacko M, Gunther L, Alfieri A, Friedman JM, Nitric Oxide, 19(1), 12 (2008)
- Gelperina S, Kisich K, Iseman MD, Heifets L, American Journal of Respiratory Critical Care Medicine, 172(12), 1487(2005).
- Gupta R, Kumar A, Biomedical Materials, 3(3), 034005 (2008)
- Rosenholm JM, Sahlgren C, Linden M, Nanoscale, 2, 1870 (2010)
- Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY, Adv. Drug Deliv. Rev., 60(11), 1278 (2008)
- Vivero-Escoto JL, Slowing II, Trewyn B, Lin VSY, Small, 6(18), 1952 (2010)
- Jeong H, Park JH, Shin JH, Yoo JC, Park CY, Hong J, Chem. Mater., 30(23), 8528 (2018)
- Jeong H, Hwang J, Lee H, Hammond PT, Choi J, Hong J, Scientific reports, 7(1), 9481 (2017)
- Choi D, Son B, Park TH, Hong J, Nanoscale, 7(15), 6703 (2015)
- Jeong H, Heo J, Son B, Choi D, Park TH, Chang M, Hong J, ACS Applied Materials Interfaces, 7(47), 26117 (2015)
- Park S, Choi D, Jeong H, Heo J, Hong J, Molecular Pharmaceutics, 14(10), 3322 (2017)
- Choi M, Park S, Park K, Jeong H, Hong J, ACS Biomaterials Science Engineering, 5(3), 1378 (2019)
- O'Hagan D, Chem. Soc. Rev., 37(2), 308 (2008)
- Riess JG, Artificial Cells, Blood Substitutes, Biotechnology, 33(1), 47(2005).
- Kerwin JF, Lancaster JR, Feldman PL, J. Med. Chem., 38(22), 4343 (1995)
- Welch G, Loscalto J, J. cardiac surgery, 9(3), 361 (1994)
- Jones ML, Ganopolsky JG, Labbe A, Wahl C, Prakash S, Appl. Microbiol. Biotechnol., 88(2), 401 (2010)
- Decher G, Science, 277(5330), 1232 (1997)
- Heo J, Choi M, Chang J, Ji D, Kang SW, Hong J, Scientific Reports, 7(1), 456 (2017)
- Han U, Seo Y, Hong J, Scientific Reports, 6, 24158 (2016)
- Hwangbo S, Heo J, Lin X, Choi M, Hong J, Scientific reports, 6, 19178 (2016)
- Choi M, Park HH, Choi D, Han U, Park TH, Lee H, Park J, Hong J, Adv. healthcare materials, 6(14), 170021 (2017)
- Han U, Park HH, Kim YJ, Park TH, Park JH, Hong J, ACS Applied Materials Interfaces, 9(30), 25087 (2017)
- Jeong H, Ranallo S, Rossetti M, Heo J, Shin J, Park K, Ricci F, Hong J, Small, 12(40), 5572 (2016)
- Jeong H, Park K, Yoo JC, Hong J, RSC Advances, 8(68), 38792 (2018)
- Silva JM, Caridade SG, Costa RR, Alves NM, Groth T, Picart C, Reis RL, Mano JF, Langmuir, 31(41), 11318 (2015)
- Rizk M, Witte MB, Barbul A, World journal of surgery, 28(3), 301 (2004)
- Park K, Jeong H, Tanum J, Yoo JC, Hong J, J. industrial engineering chemistry, 69, 263 (2019)
- Burke SE, Barrett CJ, Biomacromolecules, 4(6), 1773 (2003)
- Zhou J, Wang B, Tong W, Maltseva E, Zhang G, Krastev R, Gao C, Mohwald H, Shen J, Colloids Surf. B: Biointerfaces, 62(2), 250 (2008)
- Kim J, J. Mater. Chem. B, 2(4), 341 (2014)
- Haynie DT, Balkundi S, Palath N, Chakravarthula K, Dave K, Langmuir, 20(11), 4540 (2004)