화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.3, 305-312, June, 2019
나노 구조체를 이용한 산화질소 전달체에 대한 연구 및 바이오메디컬 응용
Nitric Oxide Delivery using Nanostructures and Its Biomedical Applications
E-mail:
초록
산화질소(NO)가 혈관 확장, 혈소판 응집 억제, 면역 반응 조절, 상처 치료, 항암 등의 주요 병리 생리학적 프로세스에 관여한다는 사실이 밝혀지면서 최근 산화질소 전달에 대한 국내외 연구진들의 관심이 높아지고 있다. 그러나 인체에 이상적으로 적용될 수 있는 산화질소 전달체의 개발은 산화질소의 높은 반응성과 짧은 반감기로 인하여 여전히 난제로 남아 있다. 본 논문에서는 다양한 산화질소 전달체 중에서도 최근 바이오메디컬 분야에서 연구가 활발히 이루어지고 있는 나노 구조체를 이용한 전달체의 연구 결과 및 응용 방향에 대해서 소개하고자 한다. 나노 크기의 구조체가 다른 전달체와 비교하여 가지는 장점은 표면 대 부피 비율이 높아 산화질소를 효율적으로 탑재할 수 있고, 표면 개조 능력이 뛰어나 산화질소의 방출 양상을 효과적으로 제어할 수 있다는 것이다. 특히 이 글에서는 다양한 나노 구조체중에서도 나노입자 형태, 마이크로에멀젼 형태, 그리고 다층필름 형태의 나노 구조체에 대해서 다룸으로써 각 구조체의 산화질소 방출 양상을 비교하고 그 특징에 대해서 자세히 알아보고자 한다. 이와 같은 나노 구조체의 개발은 산화질소의 급격한 방출을 방지하고 지효성을 띠게 함으로써 타겟 부위에서의 효과를 높일 수 있을 것으로 기대되며, 더 나아가 차후 다양한 바이오메디컬 분야에서 유망한 치료 기제로서 적용될 수 있을 것으로 보인다.
The discovery of nitric oxide (NO) as a major signaling molecule in a number of pathophysiological processes . vasodilation, immune response, platelet aggregation, wound repair, and cancer biology - has led to the development of various exogeneous NO delivery systems. However, the development of ideal delivery system for human body application is still left as a challenge due to its high reactivity and short half-life in physiological condition. In this article, an overview of several nano-structures as potential NO delivery system will be presented, along with their recent research results and biomedical applications. Nano-size delivery system has immense advantages compared to others due to its high surface-to-volume ratio and capability for surface modification; thus, it has been proven to be effective in delivering nitric oxide with enhanced performance. Through this novel nano-structure delivery system, we are expecting to achieve sustained release of nitric oxide within adequate range of concentration, which ensures desired drug effects at the target site. Among different nano-structures, in particular, nanoparticle, microemulsion and nanofilm will be reviewed and compared to each other in respect of nitric oxide release profile. The proposed nano-structures for exogeneous NO delivery have a biological significance in that it can be further utilized in diverse biomedical fields as a highly promising therapeutic method.
  1. Walford G, Loscalzo J, Journal of Thrombosis Haemostasis, 1(10), 2112 (2003).
  2. Fang FC, The Journal of Clinical Investigation, 99(12), 2818(1997).
  3. Luo JD, Chen AF, Acta Pharmacol. Sin., 26(3), 259 (2005)
  4. Mocellin S, Bronte V, Nitti D, Medicinal Research Reviews, 27(3), 317 (2007)
  5. Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ, Journal of the American College of Cardiology, 62(2), 89 (2013).
  6. Hetrick EK, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH, ACS Nano, 2(2), 235 (2008)
  7. Suchyta DJ, Schoenfisch MH, ACS Biomaterials Science & Engineering, 3(9), 2136 (2017)
  8. Reighard KP, Ehre C, Rushton ZL, Ahonen MJR, Hill DB, Schoenfisch MH, ACS Biomaterials Science & Engineering, 3(6), 1017 (2017)
  9. Hrabie JA, Keefer LK, Chem. Rev., 102(4), 1135 (2002)
  10. Friedman AJ, Han G, Navati MS, Chacko M, Gunther L, Alfieri A, Friedman JM, Nitric Oxide, 19(1), 12 (2008)
  11. Gelperina S, Kisich K, Iseman MD, Heifets L, American Journal of Respiratory Critical Care Medicine, 172(12), 1487(2005).
  12. Gupta R, Kumar A, Biomedical Materials, 3(3), 034005 (2008)
  13. Rosenholm JM, Sahlgren C, Linden M, Nanoscale, 2, 1870 (2010)
  14. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY, Adv. Drug Deliv. Rev., 60(11), 1278 (2008)
  15. Vivero-Escoto JL, Slowing II, Trewyn B, Lin VSY, Small, 6(18), 1952 (2010)
  16. Jeong H, Park JH, Shin JH, Yoo JC, Park CY, Hong J, Chem. Mater., 30(23), 8528 (2018)
  17. Jeong H, Hwang J, Lee H, Hammond PT, Choi J, Hong J, Scientific reports, 7(1), 9481 (2017)
  18. Choi D, Son B, Park TH, Hong J, Nanoscale, 7(15), 6703 (2015)
  19. Jeong H, Heo J, Son B, Choi D, Park TH, Chang M, Hong J, ACS Applied Materials Interfaces, 7(47), 26117 (2015)
  20. Park S, Choi D, Jeong H, Heo J, Hong J, Molecular Pharmaceutics, 14(10), 3322 (2017)
  21. Choi M, Park S, Park K, Jeong H, Hong J, ACS Biomaterials Science Engineering, 5(3), 1378 (2019)
  22. O'Hagan D, Chem. Soc. Rev., 37(2), 308 (2008)
  23. Riess JG, Artificial Cells, Blood Substitutes, Biotechnology, 33(1), 47(2005).
  24. Kerwin JF, Lancaster JR, Feldman PL, J. Med. Chem., 38(22), 4343 (1995)
  25. Welch G, Loscalto J, J. cardiac surgery, 9(3), 361 (1994)
  26. Jones ML, Ganopolsky JG, Labbe A, Wahl C, Prakash S, Appl. Microbiol. Biotechnol., 88(2), 401 (2010)
  27. Decher G, Science, 277(5330), 1232 (1997)
  28. Heo J, Choi M, Chang J, Ji D, Kang SW, Hong J, Scientific Reports, 7(1), 456 (2017)
  29. Han U, Seo Y, Hong J, Scientific Reports, 6, 24158 (2016)
  30. Hwangbo S, Heo J, Lin X, Choi M, Hong J, Scientific reports, 6, 19178 (2016)
  31. Choi M, Park HH, Choi D, Han U, Park TH, Lee H, Park J, Hong J, Adv. healthcare materials, 6(14), 170021 (2017)
  32. Han U, Park HH, Kim YJ, Park TH, Park JH, Hong J, ACS Applied Materials Interfaces, 9(30), 25087 (2017)
  33. Jeong H, Ranallo S, Rossetti M, Heo J, Shin J, Park K, Ricci F, Hong J, Small, 12(40), 5572 (2016)
  34. Jeong H, Park K, Yoo JC, Hong J, RSC Advances, 8(68), 38792 (2018)
  35. Silva JM, Caridade SG, Costa RR, Alves NM, Groth T, Picart C, Reis RL, Mano JF, Langmuir, 31(41), 11318 (2015)
  36. Rizk M, Witte MB, Barbul A, World journal of surgery, 28(3), 301 (2004)
  37. Park K, Jeong H, Tanum J, Yoo JC, Hong J, J. industrial engineering chemistry, 69, 263 (2019)
  38. Burke SE, Barrett CJ, Biomacromolecules, 4(6), 1773 (2003)
  39. Zhou J, Wang B, Tong W, Maltseva E, Zhang G, Krastev R, Gao C, Mohwald H, Shen J, Colloids Surf. B: Biointerfaces, 62(2), 250 (2008)
  40. Kim J, J. Mater. Chem. B, 2(4), 341 (2014)
  41. Haynie DT, Balkundi S, Palath N, Chakravarthula K, Dave K, Langmuir, 20(11), 4540 (2004)