Energy Sources Part A-recovery Utilization and Environmental Effects, Vol.41, No.16, 1972-1982, 2019
Effect of calcite/activated carbon-based post-combustion CO2 capture system in a biodiesel-fueled CI engine-An experimental study
The present study aims to reduce carbon dioxide (CO2) emission from a CI engine using calcite/activated carbon-based post-combustion CO2 capture system fueled with Calophyllum inophyllum biodiesel (B100). The tests were conducted in a two-cylinder CI engine used in tractors at different load conditions. The performance and emission parameters of diesel and B100 with and without calcite and activated carbon-based CO2 capture system were studied. The results show that compared to diesel, CO2 emission increased by 19% for B100 due to high fuel-bound oxygen and carbon. Higher NO emission with a slightly reduced smoke opacity is observed with B100 combustion. CO2 emission is reduced with the CO2 capture system for both diesel and B100. CO2 emission is reduced by 11.5% and 7.3% for diesel with calcite and activated carbon, respectively, and reduced by 15.8% and 10.5% for B100 with calcite and activated carbon. Due to the adsorption capacity of both calcite and activated carbon, NO and smoke opacity are reduced considerably. The results display that calcite is better in reducing CO2 compared to activated carbon-based CO2 capture system. It is perceived that the combination of biofuel and calcite-based CO2 capture system can both reduce engine-out emissions and cause a net negative CO2 emission as it is renewable aiding in mitigation of global warming effects.