Inorganic Chemistry, Vol.58, No.7, 4268-4274, 2019
Stable Iron Porphyrin Intramolecularly Coordinated by Alcoholate Anion: Synthesis and Evaluation of Axial Ligand Effect of Alcoholate on Spectroscopy and Catalytic Activity
We synthesized intramolecularly aliphatic alcoholate-coordinated iron porphyrins (1a, 1b) that retain their axial coordination in the presence of another ligand or oxidant. The electron-donative character of alcoholate was less than that of thiolate, and the coordination ability of a sixth ligand to la and lb was very much lower than in the case of the thiolate-coordinated compounds. Density functional theory calculations indicated that the marked difference in coordination ability could be explained in terms of thermodynamic and steric factors. The catalytic oxidizing ability of the thiolate-coordinated compound, SR complex, was much higher than that of la.