화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.17, 8886-8892, 2019
Simulation of thermal hazards from hydrogen under-expanded jet fire
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable k-epsilon model for turbulence and the Eddy Dissipation Concept for combustion. Radiation has been taken into account through the Discrete Ordinates (DO) model. The results demonstrated good agreement with the experimental flame length. Performance of the model shall be improved to reproduce the radiative properties dynamics during the first stage of the release (time < 10 s), whereas, during the remaining blowdown time, the simulated radiative heat flux at five sensors followed the trend observed in the experiment. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.