International Journal of Hydrogen Energy, Vol.44, No.16, 8178-8187, 2019
Macaroon-like FeCo2O4 modified activated carbon anode for enhancing power generation in direct glucose fuel cell
Macaroon-like FeCo2O4 nanomaterial was prepared and used as electrocatalyst in direct glucose alkaline fuel cell (DGAFC), which exhibited high catalytic activity towards glucose oxidation reaction. Maximum power density of 35.91 W m(-2) was achieved in the DGAFC equipped with a FeCo2O4 modified activated carbon (AC) anode, which was almost 151% higher than the control. Physical and electrochemical characterizations were performed to provide further understanding of the origin of its high activity. Our results show that the introduction of FeCo2O4 into the AC anode remarkably increase the exchange current density and reduce the charge transfer resistance. It is supposed that there is a synergistic effect between Fe (III) and Co (III), which accelerates electron transfer from glucose to external circuits. This study will promote the development of cost effective and environmentally benign catalysts for electrochemical energy applications. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.