화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.3, 379-383, June, 2019
Thiolated Protein A-functionalized Bimetallic Surface Plasmon Resonance Chip for Enhanced Determination of Amyloid Beta 42
E-mail:
The capability of detecting amyloid beta 42 (Aβ42), a biomarker of Alzheimer’s disease, using a thiolated protein A-functionalized bimetallic surface plasmon resonance (SPR) chip was investigated. An optimized configuration of a bimetallic chip containing gold and silver was obtained through calculations in the intensity measurement mode. The surface of the SPR bimetallic chip was functionalized with thiolated protein A for the immobilization of Aβ42 antibody. The response of the thiolated protein A-functionalized bimetallic chip to Aβ42 in the concentration range of 50 to 1,000 pg/mL was linear. Compared to protein A without thiolation, the thiolated protein A resulted in greater sensitivity. Therefore, the thiolated protein A-functionalized bimetallic SPR chip can be used to detect very low concentrations of the biomarker for Alzheimer’s disease.
  1. World Health Organization, Dementia, Key facts, http://www.who.int/news-room/fact-sheets/detail/dementia, Accessed in January (2019).
  2. Gale SA, Acar D, Daffner KR, Am. J. Med., 131, 1161 (2018)
  3. Humpel C, Trends Biotechnol., 29, 26 (2011)
  4. Perrin RJ, Fagan AM, Holtzman DM, Nature, 461, 916 (2009)
  5. Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon MJ, Hampel H, Alzheimers Dement., 11, 58 (2015)
  6. Reich SG, Savitt JM, Med. Clin. North Am., 103, 337 (2019)
  7. Sanford AM, Clin. Geriatr. Med., 34, 603 (2018)
  8. Bruuna M, Koikkalainen J, Rhodius-Meester HFM, et al., Neuroimage Clin., 22, 101711 (2019)
  9. Cho SM, Kim HV, Lee S, Kim HY, Kim W, Kim TS, Kim DJ, Kim YS, Sci. Rep., 4, 6777 (2014)
  10. Kasai T, Tokuda T, Taylor M, Kondo M, Mann DMA, Foulds PG, Nakagawa M, Allsop D, Neurosci. Lett., 551, 17 (2013)
  11. Janssen L, Sobott F, Deyn PPD, Dam DV, MethodsX, 2, 112 (2015)
  12. Klaver AC, Patrias LM, Finke JM, Loeffler DA, J. Neurosci. Methods, 195, 249 (2011)
  13. Yoo YK, Kim J, Kim G, Kim YS, Kim HY, Lee S, et al., Sci. Rep., 7, 8882 (2017)
  14. Diba FS, Kim S, Lee HJ, Catal. Today, 295, 41 (2017)
  15. Xia N, Liu L, Harrington MG, Wang J, Zhou F, Anal. Chem., 82, 10151 (2010)
  16. Chou IH, Benford M, Beier HT, Cote GL, Wang M, Jing N, Kameoka J, Good TA, Nano Lett., 8, 1729 (2008)
  17. Homola J, Yee SS, Gauglitz G, Sens. Actuators B-Chem., 54, 3 (1999)
  18. Sipova H, Homola J, Anal. Chim. Acta, 773, 9 (2013)
  19. Ma TF, Chen YP, Guo JS, Wang W, Trends Analyt. Chem., 103, 102 (2018)
  20. Chien FC, Chen SJ, Biosens. Bioelectron., 20, 633 (2004)
  21. Lee YK, Sohn YS, Lee KS, Kim WM, Lim JO, J. Korean Phys. Soc, 62, 475 (2013)
  22. Lee KS, Lee TS, Kim I, Kim WM, J. Phys. D-Appl. Phys., 46, 125302 (2013)
  23. Yuan XC, Ong BH, Tan YG, Zhang DW, Irawan R, Tjin SC, J. Opt. A-Pure Appl. Opt., 8, 959 (2006)
  24. Lee HS, Seong TY, Kim WM, Kim I, Hwang GW, Lee WS, Lee KS, Sens. Actuators B-Chem., 266, 311 (2018)
  25. Kim HJ, Sohn YS, Kim CD, Jang DH, J. Korean Phys. Soc., 69, 793 (2016)
  26. Kim SH, Kim TU, Jung HY, Ki HC, Kim DG, Lee BT, J. Nanosci. Nanotechnol., 18, 1777 (2018)
  27. Fowler JM, Stuart MC, Wong DKY, Anal. Chem., 79, 350 (2007)
  28. Ghose S, Allen M, Hubbard B, Brooks C, Cramer SM, Biotechnol. Bioeng., 92, 666 (2005)
  29. Johnson PB, Christy RW, Phys. Rev. B, 6, 4370 (1972)
  30. Guider R, Gandolfi D, Chalyan T, Pasquardini L, Samusenko A, Pederzolli C, Pucker G, Pavesi L, Sens. Biosensing Res., 6, 99 (2015)
  31. Carvajal MA, Ballesta-Claver J, Martinez-Olmos A, Capitan-Vallvey LF. Palma AJ, Sens. Actuators B-Chem., 221, 956 (2015)