화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.547, 330-338, 2019
A nanoneedle-based reactional wettability variation sensor array for on-site detection of metal ions with a smartphone
An enhancement of the reactional wettability variation (RWV) sensing strategy is achieved based on the wettability switch of a nanoneedle surface. The sensor unit is formed by coating hydrophobic azoimidazole compounds, as the responder compounds onto the originally hydrophilic surface of cobalt hydroxide nanoneedles. The complexation reaction between metal ions and azoimidazole ligands etches the hydrophobic coating and switches the surface wettability, making the surface hydrophilic again. This switch is revealed by a decrease in the static contact angle (CA) and an increase in the sliding angle of the surface. The reactivity is tuned by the derivatization and conformational manipulation of the azoimidazole compounds. A sensor array composed of six as-tuned sensor units is constructed to distinguish among the species and concentrations of Fe3+, Ni2+ and La3+ at a low limit of 10(-6) M using the chemometric method of principal component analysis (PCA). In addition, a new on-site detection strategy is developed based on PCA of the sliding angle, which can be measured conveniently and swiftly with a smartphone app and a commercially available setup. The application of the general RWV strategy is envisioned to open new possibilities for on-site detection. (C) 2019 Elsevier Inc. All rights reserved.