Journal of Colloid and Interface Science, Vol.546, 184-191, 2019
Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels
Uniaxial orientation is highly desirable for fabricating advanced soft materials. Liquid crystal (LC) polymer deposition was strategically manipulated at the air-LC interface, by controlling the drying temperature and initial concentration of aqueous solution of xanthan gum in a limited space. Interface-assisted orientation led to membrane-like depositions bridging the millimeter-scale gap between the substrates both, vertically and horizontally. The applicability of this approach lies in synchronization of the molecular orientation beyond their individual LC domains into the condensed state. Cross-polarized microscopy and SEM analysis correlated the orientation of the deposited polymer with the controlled mobility of xanthan gum LC domains at the evaporative interface. Subsequently, a phase diagram was prepared for the variety of oriented structures, depending upon the drying conditions. The deposited membrane behaved as an oriented hydrogel showing reversible anisotropic swelling/deswelling only along its thickness. (C) 2019 Elsevier Inc. All rights reserved.