화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.369, 17-24, 2019
Understanding the interaction of carbon quantum dots with CuO and Cu2O by fluorescence quenching
In spite copper oxide being one of the essential micronutrient, copper oxide in its nano size is found to be toxic in nature; this instigates for the detection of copper oxides in trace levels. In the present study, we demonstrate simple cost effective detection method for CuO/Cu2O using carbon quantum dots (CQD) by fluorescence quenching technique. CuO/Cu2O nanoparticles are synthesised by mere variation of fuel ratio by solution combustion technique. The resulting oxides are characterized by various analytical and spectroscopic techniques. Powder X-ray diffraction (PXRD) results reveals that samples prepared with oxidizer to fuel (O/F) ratios 1:1, 1:1.5 and 1:2 showed pure nano CuO, major CuO phase (minor Cu2O) and major Cu2O phase (minor CuO) respectively. Further, the samples prepared using 1:1 O/F ratio and calcinated at 700 degrees C showed highly crystalline CuO phase. In order to study the interaction of CuO/Cu2O with CQDs the fluorescence quenching method has been employed. The bimolecular quenching rate constants for the samples prepared with different O/F ratios have been measured. The interaction between CQDs and copper oxides, indicates fluorescence quenching greatly depends on the oxidation state of the copper oxide and can be a promising method for detecting CuO/Cu2O through CQDs.