화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.368, 444-451, 2019
Evaluating a novel permeable reactive bio-barrier to remediate PAH-contaminated groundwater
Permeable reactive barriers (PRBs) are an environmentally-friendly, cost-effective in-situ technology that can be used to remediate polycyclic aromatic hydrocarbons (PAHs)-contaminated groundwater. In this study, PRBs of two different materials (A and B) that relied on microbes self-domestication mechanism were designed and tested. The materials A and B were the same apart from their carbon source: A was based on wheat straw and B was based on coconut shell biochar. We used laboratory batch experiments followed by long-term column tests to assess the capacity of these two materials to remediate PAHs. The results showed that both A and B removed almost 100% of the phenanthrene. More carbon was released from A (80-500 mg/L) than from B (72-195 mg/L), and slightly more oxygen was released from B (7.31-10.31 mg/L) than A (7.15-9.64 mg/L). The release of organic carbon from material B was more stable than that from material A. The bacterial communities of both columns comprised members of the Mycobacterium, Pseudomonas, and Sphingomonas genera that are known to degrade phenanthrene, and Pseudomonas and Sphingomonas were 7 times more abundant in column B than in column A. Material B is more promising for treating PAH-contaminated groundwater than material A.