Renewable Energy, Vol.139, 651-660, 2019
Influence of drag equations on computational fluid dynamic modeling of fluidization behavior of loblolly pine wood grinds
The drag equations used in computational modeling of particulate materials were developed with fundamental assumptions on shapes, size distribution and densities that are different from biomass. This study evaluated the applicability of drag equations available in popular Computational Fluid Dynamics modeling software having material with properties that are like loblolly pine wood grinds. The models were validated using a bench scale fluidized bed system. The result showed that non-spherical drag equations predicted the minimum fluidization velocity (U-mf) better than other drag equations with mean relative deviation that was less than 5%. All the model predicted bed entrainment at 2 s simulation time. The body force correlation applied improved the non-spherical drag equations fluidization behavior but with minimal impact when other drag equations were evaluated. (C) 2019 Elsevier Ltd. All rights reserved.