SIAM Journal on Control and Optimization, Vol.57, No.2, 832-853, 2019
INTERNAL OBSERVABILITY FOR COUPLED SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS
We deal with the internal observability for some coupled systems of partial differential equations with constant or time-dependent coupling terms by means of a reduced number of observed components. We prove new general observability inequalities under some Kalman-like or Silverman-Meadows-like condition. Our proofs combine the observability properties of the underlying scalar equation with algebraic manipulations. In the more specific case of systems of heat equations with constant coefficients and nondiagonalizable diffusion matrices, we also give a new necessary and sufficient condition for observability in the natural L2-setting. The proof relies on the use of the Lebeau-Robbiano strategy together with a precise study of the cost of controllability for linear ordinary differential equations, and allows us to treat the case where each component of the system is observed in a different subdomain.