Thin Solid Films, Vol.675, 123-127, 2019
Self-supporting tetrahedral amorphous carbon films consisting of multilayered structure prepared using filtered arc deposition
Self-supporting 110-nm-thick tetrahedral amorphous carbon (ta-C) films with a multilayered structure were fabricated as a carbon film target for the laser-driven ion acceleration. The self-supporting ta-C films consisted of three layers with the thicknesses of 35 nm, 40 nm, and 35 nm thick, and the film density of 3.0 g/cm(3), 2.7 g/cm(3), and 3.0 g/cm(3), respectively. The multilayered ta-C film was fabricated using the T-shape filtered arc deposition method on a Si substrate coated water-soluble material. Silk fibroin and dextran were used as the water-soluble material. The water-soluble material formed between a ta-C film and a Si substrate was dissolved, and then, the ta-C film released from the substrate. Thick single-layer ta-C films partially peeled off on the water-soluble material and broke during the dissolving process. Self-supporting ta-C films were obtained by scooping the released ta-C film on a perforated substrate. The laser was irradiated on the self-supporting ta-C films, and the ta-C film with a higher film thickness and/or film density showed a higher laser irradiation tolerance.
Keywords:Diamond-like carbon;Tetrahedral amorphous carbon;Multilayer film;Self-supporting film;Carbon film target;Laser-driven ion acceleration;Laser irradiation tolerance