Transport in Porous Media, Vol.127, No.3, 587-603, 2019
Effect of Bedding Planes on the Permeability and Diffusivity Anisotropies of Berea Sandstone
Evaluating the anisotropy of transport parameters in rocks is important for various applications, such as reservoir engineering and rock mechanics. Owing to their anisotropic pore structures, the tortuosity, constrictivity, and pore size distribution of rocks are often anisotropic in nature, which in turn affect the permeability and diffusivity. However, it has still not been determined whether the permeability and diffusivity are anisotropic in the same manner. This study used experiments and numerical modeling to examine the effect of the pore structure on the permeability and diffusivity anisotropies of rocks. The experimental results showed a clear difference in the anisotropy ratios of the permeability (k(perpendicular to)/k) and diffusivity () for Berea sandstone, which is the de facto standard porous sandstone. The analysis results from micro-focus X-ray computed tomography and simulation with the lattice Boltzmann method supported the experimental difference in anisotropy ratios. In the analysis and simulation, the relation between the minimum cross-sectional porosity area and characteristic pressure gradient was estimated. The analysis results suggest that the minimum cross-sectional porosity areas that influence the permeability anisotropy are too large to physically induce anisotropic NaCl diffusion, and thus, the diffusivity of Berea sandstone is nearly isotropic.