화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.75, 194-201, July, 2019
Mass transfer characteristics of CO2 absorption into 2-amino-2-methyl-1-propanol non-aqueous solution in a microchannel
E-mail:,
The gas.liquid two-phase flow and mass transfer performance of CO2 absorption into 2-amino-2- methyl-1-propanol (AMP) with ethylene glycol (EG) non-aqueous solution in a microchannel were investigated under different gas.liquid two-phase flow rates and AMP concentrations. A new correlation was proposed for accurately predicting the liquid side volumetric mass transfer coefficient by considering the enhancement factor. It was verified that the volumetric mass transfer coefficient of CO2 absorption in the microchannel is obviously higher than that in the traditional macroscopic column. Therefore, with the usage of microchannel for AMP-EG non-aqueous solution, both low energy consumption and high efficient absorption could be reached.
  1. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P, Science, 319, 1235 (2008)
  2. Zachos JC, Dickens GR, Zeebe RE, Nature, 451, 279 (2008)
  3. Jacobson MZ, Energy Environ. Sci., 2, 148 (2009)
  4. Sivanesan D, Youn MH, Murnandari A, Kang JM, Park KT, Kim HJ, Jeong SK, J. Ind. Eng. Chem., 52, 287 (2017)
  5. Rubin ES, Chen C, Rao AB, Energy Policy, 35(9), 4444 (2007)
  6. Rochelle GT, Science, 325, 1652 (2009)
  7. Garcia-Abuin A, Gomez-Diaz D, Navaza JM, Vidal-Tato I, AIChE J., 57(8), 2244 (2011)
  8. Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 38(10), 3917 (1999)
  9. Kim YE, Park JH, Yun SH, Nam SC, Jeong SK, Yoon YI, J. Ind. Eng. Chem., 20(4), 1486 (2014)
  10. Oexmann J, Kather A, Int. J. Greenhouse Gas Control, 4, 36 (2010)
  11. Barzagli F, Mani F, Peruzzini M, Int. J. Greenhouse Gas Control, 16, 217 (2013)
  12. Kang MK, Cho JH, Lee JH, Lee SS, Oh KJ, Energy Fuels, 31(8), 8383 (2017)
  13. Ma R, Fu T, Zhang Q, Zhu C, Ma Y, Li HZ, J. Ind. Eng. Chem., 54, 408 (2017)
  14. Kashid MN, Renken A, Kiwi-Minsker L, Chem. Eng. Sci., 66(17), 3876 (2011)
  15. Chen GW, Yue J, Yuan Q, Chin. J. Chem. Eng., 16(5), 663 (2008)
  16. Hosseini SR, Sheikholeslami M, Ghasemian M, Ganji DD, Powder Technol., 324, 36 (2018)
  17. Li C, Zhu C, Ma Y, Liu D, Gao X, Int. J. Heat Mass Transfer, 78, 1055 (2014)
  18. Ganapathy H, Shooshtari A, Dessiatoun S, Ohadi MM, Alshehhi M, Chem. Eng. J., 266, 258 (2015)
  19. Yue J, Chen GW, Yuan Q, Luo LG, Gonthier Y, Chem. Eng. Sci., 62(7), 2096 (2007)
  20. Zhu C, Li C, Gao X, Ma Y, Liu D, Int. J. Heat Mass Transfer, 73, 492 (2014)
  21. Yao CQ, Dong ZY, Zhao YC, Chen GW, Chem. Eng. Sci., 112, 15 (2014)
  22. Schultz R, Cole R, AIChE symposium series, (1979)
  23. Sheikholeslami M, Ganji DD, Energy Conv. Manag., 127, 112 (2016)
  24. Sheikholeslami M, Ganji DD, Energy, 116, 341 (2016)
  25. Shao N, Gavriilidis A, Angeli P, Chem. Eng. J., 160(3), 873 (2010)
  26. Wang XD, Zhu CY, Fu TT, Ma YG, Chem. Eng. Sci., 111, 244 (2014)
  27. Tan J, Lu YC, Xu JH, Luo GS, Chem. Eng. J., 181-182, 229 (2012)
  28. Abiev RS, Chem. Eng. J., 227, 66 (2013)
  29. Zhu CY, Lu YT, Fu TT, Ma YG, Li HZ, Int. J. Heat Mass Transf., 114, 83 (2017)
  30. Zheng C, Zhao BC, Wang K, Luo GS, AIChE J., 61(12), 4358 (2015)
  31. Thulasidas TC, Abraham MA, Cerro RL, Chem. Eng. Sci., 50(2), 183 (1995)
  32. Rabensteiner M, Kinger G, Koller M, Hochenauer C, Int. J. Greenhouse Gas Control, 51, 106 (2016)
  33. Das B, Deogam B, Mandal B, RSC Adv., 7, 21518 (2017)
  34. Svensson H, Edfeldt J, Velasco VZ, Hulteberg C, Karlsson HT, Int. J. Greenhouse Gas Control, 27, 247 (2014)
  35. Yue J, Luo LG, Gonthier Y, Chen GW, Yuan Q, Chem. Eng. Sci., 64(16), 3697 (2009)
  36. Ji XY, Ma YG, Fu TT, Zhu CY, Wang DJ, Braz. J. Chem. Eng., 27, 573 (2010)