Macromolecular Research, Vol.27, No.6, 579-585, June, 2019
Controlling the Release Profile Through Phase Control of Calcium Phosphate-Alginate Core-shell Nanoparticles in Gene Delivery
E-mail:
In this study, we aimed to control the drug release rate from calcium phosphate-alginate (CaP-Alg) core-shell nanoparticle (NPs) using CaP phases (brushite (DCPD) [Bru] and hydroxyapatite [HA]) generated under different pH conditions. Core-shell NPs consisted of an inorganic CaP core and an organic Alg shell and were synthesized by the water-in-oil emulsification and precipitation method. CaP-Alg NPs were synthesized under different pH conditions, resulting in the mineralization of CaP with Bru and HA in the core region of core-shell NPs. Albumin-fluorescein isothiocyanate conjugate (FITC-BSA) was used as a model drug for in-vitro drug release studies. CaP-Alg (Bru-Alg and HA-Alg) NPs exhibited a higher loading capacity and encapsulation efficiency than Ca-Alg NPs. The release behavior of synthesized core-shell NPs showed different patterns due to the pH-sensitivity of Alg and CaP. At physiological pH, Ca-Alg NPs exhibited an initial burst release behavior, while CaP-Alg showed controlled release behavior. Our results demonstrate that HA-Alg NPs are more suitable for controlled intracellular delivery while Bru-Alg NPs are more suitable for extracellular compartment delivery. Therefore, CaP-Alg NPs could be potential candidates for controlled gene and biomolecule delivery into cells for therapeutic purposes.
Keywords:alginate;calcium phosphate;core-shell nanoparticle;controlled release;hydroxyapatite;DCPD;brushite
- Mohtaram NK, Montgomery A, Willerth SM, Biomed. Mater., 8, 22001 (2013)
- Lee K, Silva EA, Mooney DJ, J. R. Soc. Interface, 8, 153 (2011)
- Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, Radisic M, Biomed. Mater., 10, 034004 (2015)
- Fang YL, Chen XG, Godbey WT, J. Biomed. Mater. Res. B, 103, 1679 (2015)
- Jebahi S, Oudadesse H, Saleh GB, Saoudi M, Mesadhi S, Rebai T, Keskes H, el Feki A, el Feki H, Korean J. Chem. Eng., 31(9), 1616 (2014)
- Park U, Kim K, Biotechnol. Bioproc. E., 22, 659 (2017)
- Tran M, Wang C, Front. Chem. Sci. Eng., 8, 225 (2014)
- Hollister SJ, Nat. Mater., 4, 518 (2005)
- Silva GA, Ducheyne P, Reis RL, J. Tissue Eng. Regen. Med., 1, 4 (2007)
- Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC, Expert Opin. Biol. Ther., 8, 1063 (2008)
- Zhang S, Uludag H, Pharm. Res., 26, 1561 (2009)
- Thomson RC, Wake MC, Yaszemski MJ, Mikos AG, in Biopolymers II, Springer Berlin Heidelberg, pp. 245-274.
- Lin CC, Metters AT, Adv. Drug Deliv. Rev., 58, 1379 (2006)
- Srouji S, Kizhner T, Suss-Tobi E, Livne E, Zussman E, J. Mater. Sci. -Mater. Med., 19, 1249 (2008)
- Ghosh K, Pan Z, Guan E, Ge S, Liu Y, Nakamura T, Ren XD, Rafailovich M, Clark RAF, Biomaterials, 28, 671 (2007)
- Jang J, Oh H, Lee J, Song TH, Jeong YH, Cho DW, Appl. Phys. Lett., 102, 211914 (2013)
- Suzuki S, Asoh TA, Kikuchi A, J. Biomed. Mater. Res. A, 101A, 1345 (2013)
- Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC, Nanomed. Nanotechnol. Biol. Med., 9, 474 (2013)
- Paradee N, Sirivat A, Niamlang S, Prissanaroon-Ouajai W, J. Mater. Sci. -Mater. Med., 23, 999 (2012)
- Zhao XL, Ding XB, Deng ZH, Zheng ZH, Peng YX, Long XP, Macromol. Rapid Commun., 26(22), 1784 (2005)
- Dumitrescu AM, Slatineanu T, Poiata A, Iordan AR, Mihailescu C, Palamaru MN, Colloids Surf. A: Physicochem. Eng. Asp., 455, 185 (2014)
- Lee D, Upadhye K, Kumta PN, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 177, 289 (2012)
- Mostaghaci B, Loretz B, Lehr CM, Curr. Pharm. Des., 22, 1529 (2016)
- Xie Y, Chen Y, Sun M, Ping Q, Curr. Pharm. Biotechnol., 14, 918 (2013)
- Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, Kumta PN, Sfeir C, Biomaterials, 28, 1267 (2007)
- Chen SH, Chen CH, Shalumon KT, Chen JP, Int. J. Nanomedicine, 9, 4079 (2014)
- Ahn SJ, Shin YM, Kim SE, Jeong SI, Jeong JO, Park JS, et al., Biotechnol. Bioproc. E., 20, 948 (2015)
- Amini Y, Moradi B, Tafaghodi M, Meshkat Z, Ghazvini K, Fasihi-Ramandi M, Biotechnol. Bioproc. E., 21, 653 (2016)
- Shin YM, Park JS, Jeong SI, An SJ, Gwon HJ, Lim YM, Nho YC, Kim CY, Biotechnol. Bioproc. E., 19, 341 (2014)
- Ciobanu G, Harja M, Rusu L, Mocanu AM, Luca C, Korean J. Chem. Eng., 31(6), 1021 (2014)
- Huang S, Fu X, J. Control. Release, 142, 149 (2010)
- Uskokovic V, Desai TA, J. Biomed. Mater. Res. A, 101A, 1427 (2013)
- Yang J, Chen J, Pan D, Wan Y, Wang Z, Carbohydr. Polym., 92, 719 (2013)
- Leveque I, Rhodes KH, Mann S, J. Mater. Chem., 12, 2178 (2002)
- Liang YH, Liu CH, Liao SH, Lin YY, Tang HW, Liu SY, Lai IR, Wu KCW, ACS Appl. Mater. Interfaces, 4, 6720 (2012)
- Xie J, Riley C, Kumar M, Chittur K, Biomaterials, 23, 3609 (2002)
- Lee MS, Lee JE, Byun E, Kim NW, Lee K, Lee H, Sim SJ, Lee DS, Jeong JH, J. Control. Release, 192, 122 (2014)
- Uskokovic V, Uskokovic DP, J. Biomed. Mater. Res. B, 96, 152 (2011)