Macromolecular Research, Vol.27, No.6, 606-613, June, 2019
Multiple Energy Harvesting Based on Reversed Temperature Difference Between Graphene Aerogel Filled Phase Change Materials
E-mail:,
We demonstrated a thermo-electric energy harvesting system that utilized the temperature difference between two graphene aerogel filled composites. Two phase change materials (PCMs), polyethylene glycol (PEG) and 1-tetradecanol (1-TD), were used to absorb or release a large amount of heat of fusion during the phase transitions. Since the temperature of cold side can be higher than that of hot side in the heating and cooling processes, unwanted energy loss may occur in the PCM system. Therefore, the amount of energy harvesting is quite limited. In this sense, we designed a new energy harvesting system by integrating two kinds of PCMs to enhance the amount of released heat energy and its time duration. The energy harvesting based on thermo-electric conversion was performed by combining multi-PCMs with N and P type semiconductors (PN TEGs). Based on the different temperature gradients generated in melting and crystallization processes, the electric energy was harvested for 2,200 s and 850 s at the first thermo-electric conversion and for 2,700 s and 1,500 s at the second thermo-electric conversion. In addition, the numerical simulation of the system was carried out using the finite element method (FEM), and the predicted results were close to the experimental results.
- Im H, Kim T, Song H, Choi J, Park JS, Ovalle-Robles R, Yang HD, Kihm KD, Baughman RH, Lee HH, Nat. Commun., 7, 10600 (2016)
- Vining CB, Nat. Mater., 8(2), 83 (2009)
- Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA, Nat. Rev. Mater., 1, 16050 (2016)
- Qi G, Yang J, Bao R, Xia D, Cao M, Yang W, Yang M, Wei D, Nano Res., 10, 802 (2017)
- Chen X, Gao H, Yang M, Dong W, Huang X, Li A, Dong C, Wang G, Nano Energy, 49, 86 (2018)
- da Cunha JP, Eames P, Appl. Energy, 177, 227 (2016)
- Xu BW, Li ZJ, Appl. Energy, 105, 229 (2013)
- Jaworski M, Bednarczyk M, Czachor M, Appl. Therm. Eng., 96, 527 (2016)
- Khan MMA, Ibrahim NI, Mahbubul IM, Ali HM, Saidur R, Al-Sulaiman FA, Sol. Energy, 166, 334 (2018)
- Ye S, Zhang Q, Hu D, Feng J, J. Mater. Chem. A, 3, 4018 (2015)
- Karaman S, Karaipekli A, Sari A, Bicer A, Sol. Energy Mater. Sol. Cells, 95(7), 1647 (2011)
- Wang Y, Xia TD, Feng HX, Zhang H, Renew. Energy, 36(6), 1814 (2011)
- Sari A, Bicer A, Al-Sulaiman FA, Karaipekli A, Tyagi VV, Energy Build., 164, 166 (2018)
- Zeng JL, Zhu FR, Yu SB, Xiao ZL, Yan WP, Zheng SH, Zhang L, Sun LX, Cao Z, Sol. Energy Mater. Sol. Cells, 114, 136 (2013)
- Li MG, Zhang Y, Xu YH, Zhang D, Polym. Bull., 67(3), 541 (2011)
- Wang TY, Wang SF, Luo RL, Zhu CY, Akiyama T, Zhang ZG, Appl. Energy, 171, 113 (2016)
- Zhang ZG, Fang XM, Energy Conv. Manag., 47(3), 303 (2006)
- Leng GH, Qiao G, Jiang Z, Xu GZ, Qin Y, Chang C, Ding YL, Appl. Energy, 217, 212 (2018)
- Belessiotis GV, Papadokostaki KG, Favvas EP, Efthimiadou EK, Karellas S, Energy Conv. Manag., 168, 382 (2018)
- Mu B, Li M, Sci. Rep., 8, 8878 (2018)
- Liu L, Zheng K, Yan Y, Cai ZH, Lin SX, Hu XB, Sol. Energy Mater. Sol. Cells, 185, 487 (2018)
- Yun YS, Cho SY, Jin HJ, Macromol. Res., 22(5), 509 (2014)
- Qi GQ, Liang CL, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB, Sol. Energy Mater. Sol. Cells, 123, 171 (2014)
- Krittayavathananon A, Sawangphruk M, Electrochim. Acta, 212, 237 (2016)
- Li D, Sur GS, Macromol. Res., 22(2), 113 (2014)
- Zou DQ, Ma XF, Liu XS, Zheng PJ, Hu YP, Int. J. Heat Mass Transf., 120, 33 (2018)
- Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Xie BH, Yang MB, Yang W, Sol. Energy Mater. Sol. Cells, 174, 56 (2018)
- Feng W, Qin M, Feng Y, Carbon, 109, 575 (2016)
- Yu C, Yang SH, Pak SY, Youn JR, Song YS, Energy Conv. Manag., 169, 88 (2018)
- Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Yang W, Xie BH, Yang MB, Chem. Eng. J., 315, 481 (2017)
- Atouei SA, Ranjbar AA, Rezania A, Appl. Energy, 208, 332 (2017)
- Atouei SA, Rezania A, Ranjbar AA, Rosendahl LA, Energy, 156, 311 (2018)
- He W, Zhang G, Zhang XX, Ji J, Li GQ, Zhao XD, Appl. Energy, 143, 1 (2015)
- Kim S, Appl. Energy, 102, 1458 (2013)
- Choi J, Tu NDK, Lee SS, Lee H, Kim JS, Kim H, Macromol. Res., 22(10), 1104 (2014)
- Zhang Y, Gurzadyan GG, Umair MM, Wang WT, Lu RW, Zhang SF, Tang BT, Chem. Eng. J., 344, 402 (2018)
- Kwan TH, Wu XF, Yao QH, Energy, 159, 448 (2018)
- Chavez R, Angst S, Hall J, Maculewicz F, Stoetzel J, Wiggers H, Hung LT, Van Nong N, Pryds N, Span G, J. Phys. D-Appl. Phys., 51, 014005 (2017)
- Chavez R, Angst S, Hall J, Stoetzel J, Kessler V, Bitzer L, Maculewicz F, Benson N, Wiggers H, Wolf D, Schierning G, Schmechel R, J. Electron. Mater., 43, 2376 (2014)
- Yang J, Qi GQ, Liu Y, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB, Carbon, 100, 693 (2016)
- He H, Klinowski J, Forster M, Lerf A, Chem. Phys. Lett., 287, 53 (1998)
- Guerrero-Contreras J, Caballero-Briones F, Mater. Chem. Phys., 153, 209 (2015)
- Song J, Wang X, Chang CT, J. Nanomater., 2014 (2014)
- Kim J, Khoh WH, Wee BH, Hong JD, Rsc. Adv., 5, 9904 (2015)
- Tang LS, Yang J, Bao RY, Liu ZY, Xie BH, Yang MB, Yang W, Energy Conv. Manag., 146, 253 (2017)
- Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T, Materials, 8, 732 (2015)
- Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T, RSC Adv., 4, 28802 (2014)