Polymer(Korea), Vol.43, No.4, 553-558, July, 2019
자기조립 단분자막의 알킬사슬 길이에 따른 고분자 박막 트랜지스터의 전하트랩 밀도 제어
Control of Charge Trap Density in Polymer Thin Film Transistor Using Self-assembled Monolayer with Different Alkyl Chain Length
E-mail:
초록
본 연구에서는 게이트 절연체 위에 표면개질된 자기조립 단분자막이 고분자 박막의 전하이동 특성에 미치는 영향을 체계적으로 분석하였다. SiO2 게이트 절연층에 CH3의 작용기를 가지는 자기조립 단분자막을 형성하였을 경우 반도체/절연층 계면에 존재하는 전하트랩 양이 감소됨을 보였다. 자기조립 단분자막의 알킬사슬의 길이가 C1, C8, C18로 길어질수록 전하트랩이 더욱 감소하여 트랜지스터의 전하이동도가 증가하였다. 그리고 본 연구에서 사용된 고분자 반도체인 poly(3-hexylthiophene) 박막의 결정화도가 높은 경우에는 박막 내부의 전하트랩과 계면에서의 전하트랩이 동시에 줄어들어 결정화도가 낮은 poly(3-hexylthiophene) 박막보다 더 높은 전하이동 특성을 보였다.
In this paper, influence of a surface-modified self-assembled monolayer onto a gate insulator on charge transport properties in polymer films was systematically investigated. Charge trap density at the interface between a semiconductor and an insulator drastically decreased by using CH3 functionalized self-assembled monolayer. We found that the longer alkyl chain length in the self-assembled monolayer (i.e., C1, C8, and C18) further reduced the charge trap, and thereby increased the field-effect mobility of the transistors. Moreover, poly(3-hexylthiophene) thin films with high crystallinity show better charge transport properties than that of polymer films with lower crystallinity due to the reduced charge trap density both in the polymer thin films and at the interface between semiconductor and insulator.
Keywords:organic thin film transistors;poly(3-hexylthiophene);self-assembled monolayer;charge trap density
- Cho N, Kim JH, Polym. Korea, 40(5), 818 (2016)
- Chu TY, Zhang Z, Dadvand A, Py C, Lang S, Tao Y, Org. Electron., 51, 485 (2017)
- Lee C, Chung S, Hong Y, Kim SO, Kwon SK, IEEE Electron Device Lett., 32, 1134 (2011)
- Sowade E, Mitra KY, Ramon E, Martinez-Domingo C, Villani F, Loffredo F, Gomes HL, Baumann RR, Org. Electron., 30, 237 (2016)
- Chou CM, Chang CW, Wen KH, Hsiao VKS, Surf. Coat. Technol., 320, 554 (2017)
- Liu Z, Yin Z, Wang J, Zheng Q, Adv. Funct. Mater., 29, 1 (2019)
- Sekine T, Kumaki D, Tokito S, Materials, 10, 18 (2017)
- Arca F, Tedde SF, Sramek M, Rauh J, Lugli P, Hayden O, Sci. Rep., 3, 1324 (2013)
- Bolognesi A, Berliocchi M, Manenti M, Di Carlo A, Lugli P, Lmimouni K, Dufour C, IEEE Trans. Electron Devices, 51, 1997 (2004)
- Dao TT, Matsushima T, Friedlein R, Murata H, Org. Electron., 14, 2007 (2013)
- Itoh E, Miyairi K, Thin Solid Films, 499(1-2), 95 (2006)
- Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T, Adv. Mater., 30, 1 (2018)
- Zheng H, Zhang F, Zhou N, Sun M, Li X, Xiao Y, Wang S, Org. Electron., 56, 89 (2018)
- Kim DH, Jang Y, Park YD, Cho K, Macromolecules, 39(17), 5843 (2006)
- Kim DH, Park YD, Jang YS, Yang HC, Kim YH, Han JI, Moon DG, Park SJ, Chang TY, Chang CW, Joo MK, Ryu CY, Cho KW, Adv. Funct. Mater., 15(1), 77 (2005)
- Pernstich KP, Haas S, Oberhoff D, Goldmann C, Gundlach DJ, Batlogg B, Rashid AN, Schitter G, J. Appl. Phys., 96, 6431 (2004)
- Zschieschang U, Brunnbauer M, Schmid G, Stellacci F, Effenberger F, Maisch S, Klauk H, Halik M, Dehm C, Schutz M, Nature, 431, 963 (2004)
- Bonfante G, Chevalliot S, Toury B, Berge B, Maillard M, Phys. Chem. Chem. Phys., 19, 3214 (2017)
- Park JH, Kwon OJ, Kim TH, Mun J, Park YD, Org. Electron., 62, 394 (2018)
- Na JY, Kim M, Park YD, J. Phys. Chem. C, 121, 13930 (2017)
- Na JY, Kang B, Lee SG, Cho K, Park YD, ACS Appl. Mater. Interfaces, 9, 9871 (2017)
- Kim S, Kang B, Lee M, Lee SG, Cho K, Yang H, Park YD, RSC Adv., 4, 41159 (2014)
- Chae BJ, Park JH, Song HJ, Jang SH, Jung K, Park YD, Yim T, Electrochim. Acta, 290, 465 (2018)
- Aiyar AR, Hong JI, Nambiar R, Collard DM, Reichmanis E, Adv. Funct. Mater., 21(14), 2652 (2011)
- Park B, Aiyar A, Hong JI, Reichmanis E, ACS Appl. Mater. Interfaces, 3, 1574 (2011)
- Gunduz B, Yakuphanoglu F, Sens. Actuators A-Phys., 178, 141 (2012)
- Kalb WL, Batlogg B, Phys. Rev. B: Condens. Matter, 81, 1 (2010)