화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.4, 589-594, July, 2019
유리섬유 강화에 의한 폴리프로필렌 화학발포체의 물성 향상
Improvement of Physical Properties of Polypropylene Chemical Foam by Glass Fiber Reinforcement
E-mail:
초록
폴리프로필렌과 유리섬유가 보강된 폴리프로필렌/유리섬유 복합재료를 이용하여, 코어백 방식을 적용한 발포 사출 성형을 통해서 다양한 밀도의 시편을 제조하였고, 이들의 기계적 특성과 발포 셀 및 유리섬유의 분포를 조사하였다. 시편의 밀도가 낮을수록 발포에 의한 셀 형성이 많아져서 기계적 강도 및 탄성계수가 감소했지만, 유리섬유 함유량이 높을수록 기계적 강도가 현저히 향상되었다. X-ray CT와 레이저 현미경 분석을 통해 발포 셀과 유리섬유가 시편 내부에 균일하게 분포된 것을 확인하였다. 폴리프로필렌/유리섬유 복합재료의 발포 성형을 통해 경량 효과뿐만 아니라 유리섬유 보강을 통한 기계적 특성 향상을 동시에 구현할 수 있었다.
Various foam specimens were prepared using foam injection molding with core-back method to polypropylene/glass fiber composite. Their mechanical properties and distribution of both foam cell and glass fiber were investigated. As the density of specimen decreased, both mechanical strength and tensile modulus decreased due to the increased formation of foam cell. However, the mechanical property was improved significantly by reinforcing with glass fiber. Uniform distribution of both foam cell and glass fiber was confirmed by X-ray CT and laser microscope. Foam injection molding of polypropylene/glass fiber resulted in improvement of mechanical property by glass fiber reinforcement as well as weight reducing by foaming.
  1. Yuan MJ, Turng LS, Polymer, 46(18), 7273 (2005)
  2. Shimbo M, Higashitani I, Miyano Y, J. Cell. Plast., 43, 157 (2007)
  3. Rachtanapun P, Selke SEM, Matuana LM, Polym. Eng. Sci., 44(8), 1551 (2004)
  4. Park J, Lee J, Kim S, Kim J, Ahn K, Transact. KSAE, 21, 123 (2013)
  5. Chen SC, Yang JP, Hwang JS, Chung MH, J. Reinf. Plast. Compos., 27, 153 (2008)
  6. Hikita K, JSAE Rev., 23, 239 (2002)
  7. Lee JWS, Wang J, Yoon JD, Park CB, Ind. Eng. Chem. Res., 47(23), 9457 (2008)
  8. Xu J, Pierick D, J. Injection Molding Technol., 5, 152 (2001)
  9. Tromm M, Shaayegan V, Wang CD, Heim HP, Park CB, Polymer, 160, 43 (2019)
  10. Villamizar CA, Han CD, Polym. Eng. Sci., 18, 699 (1978)
  11. Han CD, Yoo HJ, Polym. Eng. Sci., 21, 518 (1981)
  12. Lee JWS, Lee RE, Wang J, Jung PU, Park CB, Chem. Eng. Sci., 167, 105 (2017)
  13. Shaayegan V, Wang C, Costa F, Han S, Park CB, Eur. Polym. J., 92, 314 (2017)
  14. Ishikawa T, Taki K, Ohshima M, Polym. Eng. Sci., 52(4), 875 (2012)
  15. Sporrer ANJ, Altstadt V, J. Cell. Plast., 43, 313 (2007)
  16. Yoon KH, Lee JW, Kim YC, Polym. Korea, 37(4), 494 (2013)
  17. Ha JU, Jeoung SK, Lee PC, Hwang YJ, Nam BK, Han IS, Kwak SB, Lee JY, Polym. Korea, 39(1), 64 (2015)
  18. Hwang DY, Han KD, Hong D, Lee KI, Lee KY, Polym. Korea, 24, 529 (2010)
  19. Yetgin SH, Unal H, Mimaroglu A, J. Cell. Plast., 50, 563 (2014)
  20. Lee JW, Kim JH, Ji SG, Kim KS, Kim YC, Polym. Korea, 39(4), 572 (2015)
  21. Son JM, Song KB, Kang BW, Lee KH, Polym. Korea, 36(1), 34 (2012)
  22. Wong S, Lee JWS, Naguib HE, Park CB, Macromol. Mater. Eng., 293, 605 (2008)
  23. Kim SW, Park JH, Kim DJ, Lim HS, Seo KH, Polym. Korea, 29(6), 557 (2005)
  24. Hornsby PR, Head IR, Russell DAM, J. Mater. Sci., 21, 3279 (1986)
  25. Thompson MR, Qin X, Zhang G, Hrymak AN, J. Appl. Polym. Sci., 102(5), 4696 (2006)