Polymer(Korea), Vol.43, No.4, 621-628, July, 2019
사슬연장제의 종류에 따른 바이오 열가소성 폴리우레탄의 물성변화 연구
Changes in the Properties of Bio-Based Thermoplastic Polyurethanes with Different Chain Extenders
E-mail:
초록
Adipic acid와 isosorbide를 사용하여 바이오 폴리에스터 폴리올을 합성하였다. 합성된 바이오 폴리에스터 폴리올을 4,4'-methylene bis(phenyl isocyanate)(MDI), isosorbide, 1,3-propandiol, 1,4-butanediol 3가지 사슬증량제와 1:2.1:1의 비율로 혼합하여 바이오 폴리우레탄을 합성하였다. 바이오 폴리우레탄의 구조를 분석하기 위해서 FTIR, TGA 및 DSC를 사용하였다. 고분자 가공분석기(RPA)의 변형 스윕(strain sweep) 및 온도 스윕(temperature sweep)기능을 사용하여 바이오 폴리우레탄의 점탄성 및 내열성을 조사하였다. UTM, shore A 기기를 사용하여 바이오 폴리우레탄의 인장강도, 경도를 측정하였다. Oven을 사용하여 바이오 폴리우레탄의 내수성을 조사하였다. 바이오 폴리에스터 폴리올, MDI와 isosorbide에 의한 바이오 폴리우레탄이 가장 좋은 기계적 물성과 점탄성을 보여주었다. 1,3-PD에 의한 바이오 폴리우레탄이 더 좋은 내열성을 보여 주었다.
Bio-based polyester polyol was synthesized by esterification using adipic acid and isosorbide. After the esterification, the bio-based polyurethanes (PUs) were synthesized by the reaction between the polyester polyol, isocyanate (4,4'-diphenylmethane diisocyanate) (MDI) and three chain extenders (1,3-propanediol (1,3-PD), 1,4-butanediol, or isosorbide) with a mixing ratio of 1:2.1:1. A thermoplastic polyurethane (TPU) without extender was used as a control. The structure analysis of bio-based TPUs were performed using FTIR, TGA, and DSC. Viscoelastic properties was investigated using a strain sweep test mode with a rubber process analyzer (RPA). The mechanical properties of samples (tensile strength and hardness value) were characterized with UTM and shore A hardness tester at room temperature. Water- and heat-resistance properties of the bio-TPUs were investigated using an oven and RPA with temperature sweep mode. The bio-based TPU which contained isosorbide as the chain extender showed the best mechanical and viscoelastic properties, and this polymer also showed great water and heat resistance during the test. The bio-based TPUs that contained liner chain extender 1,3-PD also showed excellent viscoelastic properties and heat resistance.
- Kausar A, Zulfiqar S, Ahmad Z, Sarwar MI, Polym. Degrad. Stabil., 95, 2281 (2010)
- Mohanty AK, Misra M, Drzal LT, J. Polym. Environ., 10, 19 (2002)
- Sienkiewicz A, Czub P, EXPRESS Polym. Lett., 11, 4 (2017)
- Petrovic ZS, Cvetkovic I, Hong D, Wan X, Zhang W, Abraham TW, Malsam J, Eur. J. Lipid Sci. Tech., 112, 97 (2010)
- Hepburn C, Polyurethane elastomers, Springer Science & Business Media, New York, 2012.
- Soroudi A, Jakubowicz I, Eur. Polym. J., 49, 2839 (2013)
- Hermanutz F, Hirt P, Oess O, Oppermann W, U.S. Patent 6485665 (2002).
- Harjunalanen T, Lahtinen M, Eur. Polym. J., 39, 817 (2003)
- Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN, Prog. Org. Coat., 55, 231 (2006)
- Charlon M, Heinrich B, Matter Y, Couzigne E, Donnio B, Averous L, Eur. Polym. J., 61, 197 (2014)
- Imbernon L, Norvez S, Eur. Polym. J., 82, 347 (2016)
- Sun QQ, Duan ZK, Peng H, Li LN, Mater. Rev., 24, 469 (2010)
- Petrovic ZS, Zhang W, Javin I, Macromolecules, 6, 713 (2005)
- Choi SY, Cho UR, Elastomers Compos., 40, 249 (2005)
- Hwang SO, Lee BH, Cho UR, Elastomers Compos., 47, 238 (2012)
- Jin KH, Kim MS, Cho UR, Elastomers Compos., 48, 190 (2013)
- Jin KH, Cho UR, Elastomers Compos., 49, 31 (2014)
- Yu M, Xu Q, Wang GY, Polyurethane Industry, 21(2), 1 (2006)
- Jin YL, Wu GH, Zhao T, Tan XL, Technology & Economics in Petrochemicals, 30, 21 (2014).
- Aman MJ, Karauzum H, Bowden MG, Nguyen TL, J. Bio-mol. Struct. Dyn., 28, 1 (2010)