화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.4, 507-511, August, 2019
고분자전해질연료전지에서 수소투과도 측정법의 비교
Comparison of Measurement Method of Hydrogen Permeability in Proton Exchange Membrane Fuel Cell
E-mail:
초록
고분자전해질 연료전지(PEMFC)의 고분자막 내구성을 평가하는데 수소투과도가 많이 사용되고 있다. 수소투과도를 쉽게 측정하는 방법으로 선형 주사 전압 측정법(Linear Sweep Voltammetry, LSV)이 주로 사용된다. 연구자마다 LSV 측정 방법에 차이가 있어 연구 결과를 비교하기가 어려울 때가 많다. 그래서 본 연구에서는 측정하기 어렵지만 정확한 값이라고 할 수 있는 기체 크로마토그래프에 의한 수소투과도와 DOE와 NEDO의 LSV 방법을 비교하여 정확성을 확인하고자 하였다. 온도와 상대습도를 변화시키며 수소투과도를 측정해 비교했을 때, DOE LSV 방법이 GC 방법과 비교해 오차 범위 5%이하의 정확성을 보였다. NEDO LSV 방법은 DOE방법과 같이 0.3V의 전류 값으로 수소투과전류밀도를 결정했을 때 오차는 감소하였다.
Hydrogen permeability is widely used to evaluate the polymer membrane durability of polymer electrolyte fuel cells (PEMFC). Linear sweep voltammetry (LSV) is mainly used to measure hydrogen permeability easily. There are many differences in LSV measurement method among researchers, and it is often difficult to compare the results. Therefore, in this study, we tried to confirm the accuracy by comparing the hydrogen permeability of LSV method and gas chromatograph which is difficult to measure but accurate value. The LSV method used the DOE and NEDO methods. When the hydrogen permeability was measured by varying the temperature and the relative humidity, the DOE LSV method showed an accuracy of less than 5% in the error range compared with the GC method. In the NEDO LSV method, the error was reduced when the hydrogen permeation current density was determined at the current value of 0.3 V as the DOE method.
  1. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
  2. Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
  3. Wilkinson DP, St-Pierre J, Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
  6. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838 (2006)
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
  8. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
  10. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
  11. Jeong J, Jeong J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 52(4), 425 (2014)
  12. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
  13. Jeong J, Jeong J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 53(4), 412 (2015)
  14. Oh SH, Hwang BC, Lee MS, Lee DH, Park KP, Korean Chem. Eng. Res., 56(2), 151 (2018)
  15. U.S. Department of Energy and U.S. DRIVE Fuel Cell Technical Team, Development and Demonstration Plan, 2016 Fuel Cell Section.
  16. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins.,Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).