화학공학소재연구정보센터
Advanced Powder Technology, Vol.30, No.9, 1965-1975, 2019
Yolk-shell CdS@void@TiO2 composite particles with photocorrosion resistance for enhanced dye removal and hydrogen evolution
Yolk-shell CdS@void@TiO2 (cadmium sulfide@void@titanium dioxide) composite particles (CPs), consisting of three parts: core (CdS) synthesized by solvent thermal reaction, void generated by polypyrrole (PPy) sacrificed layers and porous shell (TiO2) by sol-gel method, were innovatively fabricated. The actual yolk-shell structure and chemical composition of the resultant CdS@void@TiO2 were verified by fieldemission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray powder diffraction analyses (XRD), and X-ray photoelectron spectroscopy (XPS). CdS@void@TiO2 CPs possessed enhanced visible light response due to its narrower energy gap (2.9 eV) than TiO2 (3.2 eV). With the support of photocatalytic performance test results, CdS@void@TiO2 exhibits much higher hydrogen evolution rate up to 1893.5 mu mol h (1) g (1) as well as dye removal efficiency both under visible and UV light irradiation than pristine TiO2. The covering of TiO2 shell remarkably promotes the photocorrosion resistance of CdS. The unique yolk-shell structure promotes striking photocatalytic performance in dye removal and hydrogen evolution. A possible photocatalytic mechanism about enhanced photocatalytic activity and robust photostability is also proposed. (C) 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.