Applied Energy, Vol.248, 567-575, 2019
Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system
The sliding mode extremum seeking control (SMESC) could track the maximum power point (MPP) of wind energy conversion system (WECS) without wind speed or wind turbine parameters. Inappropriate SMESC parameters would cause steady-state oscillation and increase tracking time. This paper proposed an improved invasive weed optimization (IIWO) to optimize the SMESC parameters. The algorithm developed a new stochastic reproductive strategy to enhance its robustness and simplify the coding. Meanwhile, IIWO optimized double parameters coordinately to replace traditional parameter setting methods of SMESC, which could make the parameters meet the different requirements simultaneously for high efficiency. Simulation results showed that proposed IIWO-SMESC method yielded a better transient response, steady-state stability, and robustness than traditional hill-climbing search (HCS) and SMESC method.
Keywords:Wind energy conversion system (WECS);Maximum power point tracking;Sliding mode extremum seeking control;Improved invasive weed optimization